Mantle Sepolia Testnet

Contract

0xd63E841AAb10D118a3cb541FbeF011eBae6437C6
Source Code Source Code

Overview

MNT Balance

0 MNT

More Info

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Amount

There are no matching entries

6 Internal Transactions found.

Latest 6 internal transactions

Advanced mode:
Parent Transaction Hash Block From To Amount
335150882026-01-16 14:47:2914 days ago1768574849
0xd63E841A...Bae6437C6
 Contract Creation0 MNT
334802642026-01-15 19:26:4114 days ago1768505201
0xd63E841A...Bae6437C6
 Contract Creation0 MNT
334786902026-01-15 18:34:1314 days ago1768502053
0xd63E841A...Bae6437C6
 Contract Creation0 MNT
334739752026-01-15 15:57:0315 days ago1768492623
0xd63E841A...Bae6437C6
 Contract Creation0 MNT
334717102026-01-15 14:41:3315 days ago1768488093
0xd63E841A...Bae6437C6
 Contract Creation0 MNT
334484572026-01-15 1:46:2715 days ago1768441587
0xd63E841A...Bae6437C6
 Contract Creation0 MNT

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MpSmartWalletFactory

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import {MpSmartWallet} from "./MpSmartWallet.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";

/**
 * @title Mp Smart Wallet Factory
 * @author stoneybro
 * @notice Factory for deploying ERC-1167 minimal proxy clones of Mp Smart Wallet.
 * @custom:security-contact [email protected]
 */
contract MpSmartWalletFactory {
    /*//////////////////////////////////////////////////////////////
                           STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    /// @notice Address of the ERC-1167 implementation used as implementation for new accounts.
    address public immutable implementation;

    /// @notice Mapping from user EOA to deployed SmartAccount clone.
    mapping(address user => address clone) public userClones;
    /*//////////////////////////////////////////////////////////////
                                EVENTS
    //////////////////////////////////////////////////////////////*/

    /**
     * @param account The address of the created account.
     * @param owner The initial owner of the account.
     * @notice Emitted when a new account is created.
     */
    event AccountCreated(address indexed account, address indexed owner);

    /*//////////////////////////////////////////////////////////////
                                ERRORS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Thrown when trying to construct with an implementation that is not deployed.
     */
    error MpSmartWalletFactory__ImplementationUndeployed();

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/
    /**
     * @notice Factory constructor used to initialize the implementation address to use for future
     *   MpSmartWallet deployments.
     *
     * @param _implementation The address of the MpSmartWallet implementation which new accounts will proxy to.
     */
    constructor(address _implementation) {
        if (_implementation.code.length == 0) {
            revert MpSmartWalletFactory__ImplementationUndeployed();
        }
        implementation = _implementation;
    }

    /*//////////////////////////////////////////////////////////////
                              FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Deploys and initializes a deterministic MpSmartWallet for a specific owner, or returns
     *         the existing account if already deployed.
     *
     * @dev Deployed as an ERC-1167 minimal proxy whose implementation is `this.implementation`.
     *      Uses `owner` to generate a unique salt, ensuring one wallet per address.
     *      This function is compatible with ERC-4337 initCode deployment.
     *
     * @param owner The address that will own the smart account.
     *
     * @return account The address of the ERC-1167 proxy created for `owner`, or the existing
     *                 account address if already deployed.
     */
    function createSmartAccount(address owner) public returns (address account) {
        bytes32 salt = _getSalt(owner);
        address predictedAddress = Clones.predictDeterministicAddress(implementation, salt, address(this));

        // Return existing account if already deployed
        if (predictedAddress.code.length != 0) {
            return predictedAddress;
        }

        // Deploy new account
        account = Clones.cloneDeterministic(implementation, salt);

        // Initialize with specified owner
        MpSmartWallet(payable(account)).initialize(owner);

        // Record mapping and emit after successful initialize
        userClones[owner] = account;
        emit AccountCreated(account, owner);
    }

    /**
     * @notice Returns the deterministic address of the account that would be created for a given owner.
     *
     * @param owner The address of the owner for which to predict the account address.
     *
     * @return The predicted account deployment address.
     */
    function getPredictedAddress(address owner) external view returns (address) {
        bytes32 salt = _getSalt(owner);
        return Clones.predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @notice Returns the deployed account for a given owner or zero if none.
     *
     * @param user The address of the owner for which to retrieve the account.
     *
     * @return The deployed account address.
     */
    function getUserClone(address user) external view returns (address) {
        return userClones[user];
    }

    /**
     * @notice Returns the create2 salt for `Clones.predictDeterministicAddress`.
     *
     * @param owner The address of the owner.
     *
     * @return The computed salt.
     */
    function _getSalt(address owner) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(owner));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import {IAccount} from "@account-abstraction/contracts/interfaces/IAccount.sol";
import {PackedUserOperation} from "@account-abstraction/contracts/interfaces/PackedUserOperation.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {_packValidationData} from "@account-abstraction/contracts/core/Helpers.sol";
import {IMpSmartWallet} from "./IMpSmartWallet.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title Mp Smart Wallet
 * @author stoneybro
 * @notice A smart contract wallet implementation compliant with ERC-4337.
 * @dev Implements IAccount from account-abstraction. Supports Mp Intent Registry for automated payments.
 * @custom:security-contact [email protected]
 */
contract MpSmartWallet is IAccount, IMpSmartWallet, ReentrancyGuard, Initializable {
    /*//////////////////////////////////////////////////////////////
                                TYPES
    //////////////////////////////////////////////////////////////*/

    /// @notice Represents a call to make.
    struct Call {
        /// @dev The address to call.
        address target;
        /// @dev The value to send when making the call.
        uint256 value;
        /// @dev The data of the call.
        bytes data;
    }

    /// @notice ComplianceMetadata is defined in IMpSmartWallet interface

    /*//////////////////////////////////////////////////////////////
                           STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    /// @notice Account owner address. Signer of UserOperations.
    address public s_owner;

    /// @notice Mp intent registry authorized to trigger scheduled transfers.
    address public immutable intentRegistry;

    /// @notice Amount of funds committed to intents per token (locked)
    /// @dev address(0) represents ETH, other addresses represent ERC20 tokens
    mapping(address => uint256) public s_committedFunds;

    /// @notice EIP-1271 magic return value for valid signatures.
    bytes4 internal constant _EIP1271_MAGICVALUE = 0x1626ba7e;

    /*//////////////////////////////////////////////////////////////
                                EVENTS
    //////////////////////////////////////////////////////////////*/

    /// @notice Emitted when the committed funds are increased.
    event CommitmentIncreased(address indexed token, uint256 amount, uint256 newTotal);

    /// @notice Emitted when the committed funds are decreased.
    event CommitmentDecreased(address indexed token, uint256 amount, uint256 newTotal);

    /// @notice Emitted when a transfer fails during intent execution.
    event TransferFailed(
        bytes32 indexed intentId,
        uint256 indexed transactionCount,
        address indexed recipient,
        address token,
        uint256 amount
    );

    /// @notice Emitted when a single execute is performed
    event Executed(address indexed target, uint256 value, bytes data);

    /// @notice Emitted when a batch execute is performed
    event ExecutedBatch(uint256 indexed batchSize, uint256 totalValue);

    /// @notice Emitted when a transaction includes compliance metadata
    event ComplianceExecuted(
        bytes32 indexed txType,
        string[] entityIds,
        IMpSmartWallet.Jurisdiction[] jurisdictions,
        IMpSmartWallet.Category[] categories,
        string referenceId
    );

    /// @notice The event emitted when a wallet action is performed
    event WalletAction(
        address indexed initiator,
        address indexed target,
        uint256 value,
        bytes4 indexed selector,
        bool success,
        bytes32 actionType
    );

    /// @notice Emitted when an intent batch transfer is executed
    event IntentBatchTransferExecuted(
        bytes32 indexed intentId,
        uint256 indexed transactionCount,
        address indexed token,
        uint256 recipientCount,
        uint256 totalValue,
        uint256 failedAmount
    );

    /// @notice Emitted for each successful transfer in an intent batch
    event IntentTransferSuccess(
        bytes32 indexed intentId,
        uint256 indexed transactionCount,
        address indexed recipient,
        address token,
        uint256 amount
    );

    /*//////////////////////////////////////////////////////////////
                                ERRORS
    //////////////////////////////////////////////////////////////*/

    /// @notice Thrown when caller is not the EntryPoint.
    error MpSmartWallet__NotFromEntryPoint();

    /// @notice Thrown when caller is neither EntryPoint nor owner.
    error MpSmartWallet__Unauthorized();

    /// @notice Thrown when owner is zero address.
    error MpSmartWallet__OwnerIsZeroAddress();

    /// @notice Thrown when registry address is zero.
    error MpSmartWallet__IntentRegistryZeroAddress();

    /// @notice Thrown when batch inputs are invalid.
    error MpSmartWallet__InvalidBatchInput();

    /// @notice Thrown when a transfer fails.
    error MpSmartWallet__TransferFailed(address recipient, address token, uint256 amount);

    /// @notice Thrown when there are insufficient uncommitted funds.
    error MpSmartWallet__InsufficientUncommittedFunds();

    /// @notice Thrown when caller is not the registry.
    error MpSmartWallet__NotFromRegistry();

    /// @notice commitment decrease is more than commited balance
    error MpSmartWallet__InvalidCommitmentDecrease();

    /*//////////////////////////////////////////////////////////////
                              MODIFIERS
    //////////////////////////////////////////////////////////////*/

    /// @notice Reverts if the caller is not the EntryPoint.
    modifier onlyEntryPoint() {
        if (msg.sender != entryPoint()) {
            revert MpSmartWallet__NotFromEntryPoint();
        }
        _;
    }

    /// @notice Reverts if the caller is neither the EntryPoint nor the owner.
    modifier onlyEntryPointOrOwner() {
        if (msg.sender != entryPoint() && msg.sender != s_owner) {
            revert MpSmartWallet__Unauthorized();
        }
        _;
    }

    /// @notice Reverts if the caller is not the registry.
    modifier onlyRegistry() {
        if (msg.sender != intentRegistry) {
            revert MpSmartWallet__NotFromRegistry();
        }
        _;
    }

    /**
     * @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
     *
     * @dev Subclass MAY override this modifier for better funds management (e.g. send to the
     *  EntryPoint more than the minimum required, so that in future transactions it will not
     *   be required to send again).
     *
     * @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
     *  MAY be zero, in case there is enough deposit, or the userOp has a
     *  paymaster.
     */
    modifier payPrefund(uint256 missingAccountFunds) {
        _;

        assembly ("memory-safe") {
            if missingAccountFunds {
                // Ignore failure (it's EntryPoint's job to verify, not the account's).
                pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                             CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    /// @notice Constructor prevents initialization of implementation contract.
    constructor(address registry) {
        if (registry == address(0)) revert MpSmartWallet__IntentRegistryZeroAddress();
        intentRegistry = registry;
        _disableInitializers();
    }

    /**
     * @notice Initializes the account with the owner.
     *
     * @dev Reverts if the account has already been initialized.
     *
     * @param _owner Address that will own this account and sign UserOperations.
     */
    function initialize(address _owner) external initializer {
        if (_owner == address(0)) revert MpSmartWallet__OwnerIsZeroAddress();
        s_owner = _owner;
    }

    /*//////////////////////////////////////////////////////////////
                              FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @inheritdoc IAccount
     *
     * @notice ERC-4337 `validateUserOp` method. The EntryPoint will call this to validate
     *  the UserOperation before execution.
     *
     * @dev Signature failure should be reported by returning 1. This allows making a "simulation call"
     *  without a valid signature. Other failures should still revert.
     *
     * @param userOp The `UserOperation` to validate.
     * @param userOpHash  The hash of the `UserOperation`, computed by EntryPoint.
     * @param missingAccountFunds The missing account funds that must be deposited on the EntryPoint.
     *
     * @return validationData The encoded `ValidationData` structure:
     *  `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
     *
     */
    function validateUserOp(PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
        external
        override
        onlyEntryPoint
        payPrefund(missingAccountFunds)
        returns (uint256 validationData)
    {
        // Apply EIP-191 prefix to match how wallets sign messages
        bytes32 ethSignedMessageHash = MessageHashUtils.toEthSignedMessageHash(userOpHash);
        (address signer, ECDSA.RecoverError err,) = ECDSA.tryRecover(ethSignedMessageHash, userOp.signature);

        if (err != ECDSA.RecoverError.NoError) {
            return _packValidationData(true, 0, 0);
        }

        if (signer != s_owner) {
            return _packValidationData(true, 0, 0);
        }

        return _packValidationData(false, 0, 0);
    }

    /**
     * @notice Increases the committed funds for intents.
     * @dev Only callable by the registry.
     * @param token The token address (address(0) for ETH).
     * @param amount The amount to add to committed funds.
     */
    function increaseCommitment(address token, uint256 amount) external onlyRegistry {
        s_committedFunds[token] += amount;
        emit CommitmentIncreased(token, amount, s_committedFunds[token]);
    }

    /**
     * @notice Decreases the committed funds after intent execution/cancellation.
     * @dev Only callable by the registry.
     * @param token The token address (address(0) for ETH).
     * @param amount The amount to subtract from committed funds.
     */
    function decreaseCommitment(address token, uint256 amount) external onlyRegistry {
        if (amount > s_committedFunds[token]) {
            revert MpSmartWallet__InvalidCommitmentDecrease();
        }
        s_committedFunds[token] -= amount;
        emit CommitmentDecreased(token, amount, s_committedFunds[token]);
    }

    /**
     * @notice Executes a single call from this account.
     *
     * @dev Can only be called by the EntryPoint or the owner of this account.
     *  For ETH transfers, checks uncommitted funds. For token approvals/transfers,
     *  commitment checking happens at intent execution level.
     *
     * @param target The address to call.
     * @param value  The value to send with the call.
     * @param data   The data of the call.
     */
    function execute(address target, uint256 value, bytes calldata data)
        external
        payable
        nonReentrant
        onlyEntryPointOrOwner
    {
        _checkCommitment(address(0), value);
        bytes4 selector = data.length >= 4 ? bytes4(data[:4]) : bytes4(0);
        _call(target, value, data);
        emit WalletAction(msg.sender, target, value, selector, true, "EXECUTE");
        emit Executed(target, value, data);
    }

    /**
     * @notice Executes a single call with compliance metadata.
     * @dev Can only be called by the EntryPoint or the owner of this account.
     * @param target The address to call.
     * @param value  The value to send with the call.
     * @param data   The data of the call.
     * @param compliance Compliance metadata for tracking.
     */
    function executeWithCompliance(
        address target,
        uint256 value,
        bytes calldata data,
        IMpSmartWallet.ComplianceMetadata calldata compliance
    ) external payable nonReentrant onlyEntryPointOrOwner {
        _checkCommitment(address(0), value);
        bytes4 selector = data.length >= 4 ? bytes4(data[:4]) : bytes4(0);
        _call(target, value, data);
        emit WalletAction(msg.sender, target, value, selector, true, "EXECUTE");
        emit Executed(target, value, data);
        emit ComplianceExecuted(
            "SINGLE", compliance.entityIds, compliance.jurisdictions, compliance.categories, compliance.referenceId
        );
    }

    /**
     * @notice Executes a batch of calls from this account.
     *
     * @dev Can only be called by the EntryPoint or the owner of this account.
     *
     * @param calls The list of `Call`s to execute.
     */
    function executeBatch(Call[] calldata calls) external payable nonReentrant onlyEntryPointOrOwner {
        uint256 totalValue = 0;
        for (uint256 i; i < calls.length; i++) {
            totalValue += calls[i].value;
        }

        _checkCommitment(address(0), totalValue);

        for (uint256 i; i < calls.length; i++) {
            bytes4 selector = calls[i].data.length >= 4 ? bytes4(calls[i].data[:4]) : bytes4(0);
            _call(calls[i].target, calls[i].value, calls[i].data);
            emit WalletAction(msg.sender, calls[i].target, calls[i].value, selector, true, "BATCH");
        }
        emit ExecutedBatch(calls.length, totalValue);
    }

    /**
     * @notice Executes a batch of calls with compliance metadata.
     * @dev Can only be called by the EntryPoint or the owner of this account.
     * @param calls The list of `Call`s to execute.
     * @param compliance Compliance metadata for tracking.
     */
    function executeBatchWithCompliance(Call[] calldata calls, IMpSmartWallet.ComplianceMetadata calldata compliance)
        external
        payable
        nonReentrant
        onlyEntryPointOrOwner
    {
        uint256 totalValue = 0;
        for (uint256 i; i < calls.length; i++) {
            totalValue += calls[i].value;
        }

        _checkCommitment(address(0), totalValue);

        for (uint256 i; i < calls.length; i++) {
            bytes4 selector = calls[i].data.length >= 4 ? bytes4(calls[i].data[:4]) : bytes4(0);
            _call(calls[i].target, calls[i].value, calls[i].data);
            emit WalletAction(msg.sender, calls[i].target, calls[i].value, selector, true, "BATCH");
        }
        emit ExecutedBatch(calls.length, totalValue);
        emit ComplianceExecuted(
            "BATCH", compliance.entityIds, compliance.jurisdictions, compliance.categories, compliance.referenceId
        );
    }

    /**
     * @notice Executes a batch of transfers as part of an Mp intent.
     *
     * @param token The token address (address(0) for ETH, token address for ERC20).
     * @param recipients The array of recipient addresses.
     * @param amounts The array of amounts corresponding to each recipient.
     * @param intentId The unique identifier for the intent being executed.
     * @param transactionCount The current transaction number within the intent.
     * @param revertOnFailure Whether to revert entire transaction on any failure (true) or skip failed transfers (false).
     * @param compliance Compliance metadata for tracking.
     *
     * @return failedAmount The total amount that failed to transfer (only in skip mode)
     */
    function executeBatchIntentTransfer(
        address token,
        address[] calldata recipients,
        uint256[] calldata amounts,
        bytes32 intentId,
        uint256 transactionCount,
        bool revertOnFailure,
        IMpSmartWallet.ComplianceMetadata calldata compliance
    ) external nonReentrant onlyRegistry returns (uint256 failedAmount) {
        if (recipients.length == 0 || recipients.length != amounts.length) {
            revert MpSmartWallet__InvalidBatchInput();
        }
        uint256 totalValue = 0;
        uint256 totalFailed = 0;

        for (uint256 i; i < recipients.length; i++) {
            address recipient = recipients[i];
            uint256 amount = amounts[i];

            if (recipient == address(0) || amount == 0) {
                revert MpSmartWallet__InvalidBatchInput();
            }

            totalValue += amount;

            bool success;
            if (token == address(0)) {
                // ETH transfer
                (success,) = recipient.call{value: amount}("");
            } else {
                // ERC20 token transfer
                try IERC20(token).transfer(recipient, amount) returns (bool result) {
                    success = result;
                } catch {
                    success = false;
                }
            }

            if (!success) {
                totalFailed += amount;
                emit TransferFailed(intentId, transactionCount, recipient, token, amount);

                if (revertOnFailure) {
                    // Atomic mode: revert entire transaction on any failure
                    revert MpSmartWallet__TransferFailed(recipient, token, amount);
                }
                // Skip mode: continue to next recipient
            } else {
                // Emit success event for tracking
                emit IntentTransferSuccess(intentId, transactionCount, recipient, token, amount);
            }
        }

        emit IntentBatchTransferExecuted(intentId, transactionCount, token, recipients.length, totalValue, totalFailed);

        // Emit compliance event if categories are provided
        if (compliance.categories.length > 0) {
            emit ComplianceExecuted(
                "INTENT", compliance.entityIds, compliance.jurisdictions, compliance.categories, compliance.referenceId
            );
        }

        return totalFailed;
    }

    /**
     * @notice Returns the available (uncommitted) balance for a specific token.
     *
     * @param token The token address (address(0) for ETH, token address for ERC20).
     *
     * @return The available balance.
     */
    function getAvailableBalance(address token) external view returns (uint256) {
        if (token == address(0)) {
            // ETH balance
            return address(this).balance - s_committedFunds[address(0)];
        } else {
            // ERC20 token balance
            return IERC20(token).balanceOf(address(this)) - s_committedFunds[token];
        }
    }

    /**
     * @notice Returns the address of the EntryPoint v0.7.
     *
     * @return The address of the EntryPoint v0.7.
     */
    function entryPoint() public pure returns (address) {
        return 0x0000000071727De22E5E9d8BAf0edAc6f37da032;
    }

    /**
     * @notice EIP-1271 signature validation for contract signatures and off-chain tooling.
     *
     * @dev Supports EIP-191 (`eth_sign`) prefix for message hashing.
     *
     * @param hash      The hash that was signed.
     * @param signature The signature bytes.
     *
     * @return magicValue `_EIP1271_MAGICVALUE` (0x1626ba7e) if valid, 0x00000000 otherwise.
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4) {
        address recovered = ECDSA.recover(MessageHashUtils.toEthSignedMessageHash(hash), signature);

        if (recovered == s_owner) {
            return _EIP1271_MAGICVALUE;
        }

        return bytes4(0);
    }

    /**
     * @notice Checks if a transfer value would exceed uncommitted funds for a specific token.
     *
     * @param token The token address (address(0) for ETH).
     * @param value The value to check.
     */
    function _checkCommitment(address token, uint256 value) internal view {
        if (value > 0) {
            uint256 availableBalance;
            if (token == address(0)) {
                availableBalance = address(this).balance - s_committedFunds[address(0)];
            } else {
                availableBalance = IERC20(token).balanceOf(address(this)) - s_committedFunds[token];
            }

            if (value > availableBalance) {
                revert MpSmartWallet__InsufficientUncommittedFunds();
            }
        }
    }

    /**
     * @notice Executes a call from this account.
     *
     * @dev Reverts with the original error if the call fails.
     *
     * @param target The address to call.
     * @param value  The value to send with the call.
     * @param data   The calldata to send.
     */
    function _call(address target, uint256 value, bytes memory data) internal {
        (bool success, bytes memory result) = target.call{value: value}(data);
        if (!success) {
            assembly ("memory-safe") {
                revert(add(result, 32), mload(result))
            }
        }
    }

    /// @notice Allows the contract to receive ETH.
    receive() external payable {}

    /// @notice Fallback function to receive ETH.
    fallback() external payable {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    error CloneArgumentsTooLong();

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(232, shl(96, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(120, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple times will revert, since
     * the clones cannot be deployed twice at the same address.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(232, shl(96, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(120, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create opcode, which should never revert.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     */
    function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
        return cloneWithImmutableArgs(implementation, args, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
     * parameter to send native currency to the new contract.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneWithImmutableArgs(
        address implementation,
        bytes memory args,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        assembly ("memory-safe") {
            instance := create(value, add(bytecode, 0x20), mload(bytecode))
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
     * immutable arguments. These are provided through `args` and cannot be changed after deployment. To
     * access the arguments within the implementation, use {fetchCloneArgs}.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
     * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
     * at the same address.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal returns (address instance) {
        return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
     * but with a `value` parameter to send native currency to the new contract.
     *
     * WARNING: This function does not check if `implementation` has code. A clone that points to an address
     * without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
     * have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministicWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.deploy(value, salt, bytecode);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
        return Create2.computeAddress(salt, keccak256(bytecode), deployer);
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
     */
    function predictDeterministicAddressWithImmutableArgs(
        address implementation,
        bytes memory args,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
    }

    /**
     * @dev Get the immutable args attached to a clone.
     *
     * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
     *   function will return an empty array.
     * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
     *   `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
     *   creation.
     * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
     *   function should only be used to check addresses that are known to be clones.
     */
    function fetchCloneArgs(address instance) internal view returns (bytes memory) {
        bytes memory result = new bytes(instance.code.length - 0x2d); // revert if length is too short
        assembly ("memory-safe") {
            extcodecopy(instance, add(result, 0x20), 0x2d, mload(result))
        }
        return result;
    }

    /**
     * @dev Helper that prepares the initcode of the proxy with immutable args.
     *
     * An assembly variant of this function requires copying the `args` array, which can be efficiently done using
     * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
     * abi.encodePacked is more expensive but also more portable and easier to review.
     *
     * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
     * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
     */
    function _cloneCodeWithImmutableArgs(
        address implementation,
        bytes memory args
    ) private pure returns (bytes memory) {
        if (args.length > 0x5fd3) revert CloneArgumentsTooLong();
        return
            abi.encodePacked(
                hex"61",
                uint16(args.length + 0x2d),
                hex"3d81600a3d39f3363d3d373d3d3d363d73",
                implementation,
                hex"5af43d82803e903d91602b57fd5bf3",
                args
            );
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "./PackedUserOperation.sol";

interface IAccount {
    /**
     * Validate user's signature and nonce
     * the entryPoint will make the call to the recipient only if this validation call returns successfully.
     * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
     * This allows making a "simulation call" without a valid signature
     * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
     *
     * @dev Must validate caller is the entryPoint.
     *      Must validate the signature and nonce
     * @param userOp              - The operation that is about to be executed.
     * @param userOpHash          - Hash of the user's request data. can be used as the basis for signature.
     * @param missingAccountFunds - Missing funds on the account's deposit in the entrypoint.
     *                              This is the minimum amount to transfer to the sender(entryPoint) to be
     *                              able to make the call. The excess is left as a deposit in the entrypoint
     *                              for future calls. Can be withdrawn anytime using "entryPoint.withdrawTo()".
     *                              In case there is a paymaster in the request (or the current deposit is high
     *                              enough), this value will be zero.
     * @return validationData       - Packaged ValidationData structure. use `_packValidationData` and
     *                              `_unpackValidationData` to encode and decode.
     *                              <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure,
     *                                 otherwise, an address of an "aggregator" contract.
     *                              <6-byte> validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely"
     *                              <6-byte> validAfter - First timestamp this operation is valid
     *                                                    If an account doesn't use time-range, it is enough to
     *                                                    return SIG_VALIDATION_FAILED value (1) for signature failure.
     *                              Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function validateUserOp(
        PackedUserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 missingAccountFunds
    ) external returns (uint256 validationData);
}

File 5 of 23 : PackedUserOperation.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

/**
 * User Operation struct
 * @param sender                - The sender account of this request.
 * @param nonce                 - Unique value the sender uses to verify it is not a replay.
 * @param initCode              - If set, the account contract will be created by this constructor
 * @param callData              - The method call to execute on this account.
 * @param accountGasLimits      - Packed gas limits for validateUserOp and gas limit passed to the callData method call.
 * @param preVerificationGas    - Gas not calculated by the handleOps method, but added to the gas paid.
 *                                Covers batch overhead.
 * @param gasFees               - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters.
 * @param paymasterAndData      - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data
 *                                The paymaster will pay for the transaction instead of the sender.
 * @param signature             - Sender-verified signature over the entire request, the EntryPoint address and the chain ID.
 *
 *
 * Field layout (enforced on-chain by EntryPoint):
 * - sender: must already be deployed, or be the address that `initCode` will deploy; for EIP-7702 onboarding, `initCode = 0x7702 || optionalPayload`
 *   and `sender.code` must begin `0xef0100 || delegate`.
 * - nonce = uint192(key) || uint64(sequence); EntryPoint tracks sequential values of `sequence` separately for each `key` value.
 * - initCode:
 *     * non-7702: `initCode = factory(20) || factoryCalldata`; the factory must return `sender` and deploy code.
 *     * The `initCode` will be ignored if the `sender` is already deployed.
 *     * 7702: `0x7702` (magic prefix), optionally padded to 20 bytes and followed by the actual `initializationCode` data. This optional payload is executed on `sender` to finalise delegate setup.
 * - callData: executed verbatim; if it starts with `IAccountExecute.executeUserOp.selector` (0x8dd7712f), EntryPoint wraps and forwards `(userOp, userOpHash)`.
 * - accountGasLimits =`uint128(verificationGasLimit) || uint128(callGasLimit)`
 * - gasFees = `uint128(maxPriorityFeePerGas) || uint128(maxFeePerGas)`
 * - paymasterAndData (if non-empty) = `paymaster(20) || verificationGasLimit(16) || postOpGasLimit(16) || paymasterData`
 *     * an optional paymasterSignature may be added by appending:
 *       `paymasterSignature || uint16(paymasterSignature.length) || PAYMASTER_SIG_MAGIC (0x22e325a297439656)`
 * - signature: Used by the account to validate the UserOperation against the `userOpHash`.
 *              The hash covers all UserOperation fields, except `signature` and `paymasterSignature`
 */
struct PackedUserOperation {
    address sender;
    uint256 nonce;
    bytes initCode;
    bytes callData;
    bytes32 accountGasLimits;
    uint256 preVerificationGas;
    bytes32 gasFees;
    bytes paymasterAndData;
    bytes signature;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
     * is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
     * invalidation or nonces for replay protection.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     *
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Variant of {tryRecover} that takes a signature in calldata
     */
    function tryRecoverCalldata(
        bytes32 hash,
        bytes calldata signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, calldata slices would work here, but are
            // significantly more expensive (length check) than using calldataload in assembly.
            assembly ("memory-safe") {
                r := calldataload(signature.offset)
                s := calldataload(add(signature.offset, 0x20))
                v := byte(0, calldataload(add(signature.offset, 0x40)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
     * is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
     * invalidation or nonces for replay protection.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Variant of {recover} that takes a signature in calldata
     */
    function recoverCalldata(bytes32 hash, bytes calldata signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecoverCalldata(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Parse a signature into its `v`, `r` and `s` components. Supports 65-byte and 64-byte (ERC-2098)
     * formats. Returns (0,0,0) for invalid signatures.
     *
     * For 64-byte signatures, `v` is automatically normalized to 27 or 28.
     * For 65-byte signatures, `v` is returned as-is and MUST already be 27 or 28 for use with ecrecover.
     *
     * Consider validating the result before use, or use {tryRecover}/{recover} which perform full validation.
     */
    function parse(bytes memory signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
        assembly ("memory-safe") {
            // Check the signature length
            switch mload(signature)
            // - case 65: r,s,v signature (standard)
            case 65 {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
            case 64 {
                let vs := mload(add(signature, 0x40))
                r := mload(add(signature, 0x20))
                s := and(vs, shr(1, not(0)))
                v := add(shr(255, vs), 27)
            }
            default {
                r := 0
                s := 0
                v := 0
            }
        }
    }

    /**
     * @dev Variant of {parse} that takes a signature in calldata
     */
    function parseCalldata(bytes calldata signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
        assembly ("memory-safe") {
            // Check the signature length
            switch signature.length
            // - case 65: r,s,v signature (standard)
            case 65 {
                r := calldataload(signature.offset)
                s := calldataload(add(signature.offset, 0x20))
                v := byte(0, calldataload(add(signature.offset, 0x40)))
            }
            // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
            case 64 {
                let vs := calldataload(add(signature.offset, 0x20))
                r := calldataload(signature.offset)
                s := and(vs, shr(1, not(0)))
                v := add(shr(255, vs), 27)
            }
            default {
                r := 0
                s := 0
                v := 0
            }
        }
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reinitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
     *
     * NOTE: Consider following the ERC-7201 formula to derive storage locations.
     */
    function _initializableStorageSlot() internal pure virtual returns (bytes32) {
        return INITIALIZABLE_STORAGE;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        bytes32 slot = _initializableStorageSlot();
        assembly {
            $.slot := slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.24;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./UserOperationLib.sol";

/* solhint-disable no-inline-assembly */

using UserOperationLib for bytes;

 /*
  * For simulation purposes, validateUserOp (and validatePaymasterUserOp)
  * must return this value in case of signature failure, instead of revert.
  */
uint256 constant SIG_VALIDATION_FAILED = 1;


/*
 * For simulation purposes, validateUserOp (and validatePaymasterUserOp)
 * return this value on success.
 */
uint256 constant SIG_VALIDATION_SUCCESS = 0;


/**
 * Returned data from validateUserOp.
 * validateUserOp returns a uint256, which is created by `_packedValidationData` and
 * parsed by `_parseValidationData`.
 * @param aggregator  - address(0) - The account validated the signature by itself.
 *                      address(1) - The account failed to validate the signature.
 *                      otherwise - This is an address of a signature aggregator that must
 *                                  be used to validate the signature.
 * @param validAfter  - This UserOp is valid only after this timestamp.
 * @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely".
 */
struct ValidationData {
    address aggregator;
    uint48 validAfter;
    uint48 validUntil;
}

/**
 * Extract aggregator/sigFailed, validAfter, validUntil.
 * Also convert zero validUntil to type(uint48).max.
 * @param validationData - The packed validation data.
 * @return data - The unpacked in-memory validation data.
 */
function _parseValidationData(
    uint256 validationData
) pure returns (ValidationData memory data) {
    address aggregator = address(uint160(validationData));
    uint48 validUntil = uint48(validationData >> 160);
    if (validUntil == 0) {
        validUntil = type(uint48).max;
    }
    uint48 validAfter = uint48(validationData >> (48 + 160));
    return ValidationData(aggregator, validAfter, validUntil);
}

/**
 * Helper to pack the return value for validateUserOp.
 * @param data - The ValidationData to pack.
 * @return the packed validation data.
 */
function _packValidationData(
    ValidationData memory data
) pure returns (uint256) {
    return
        uint160(data.aggregator) |
        (uint256(data.validUntil) << 160) |
        (uint256(data.validAfter) << (160 + 48));
}

/**
 * Helper to pack the return value for validateUserOp, when not using an aggregator.
 * @param sigFailed  - True for signature failure, false for success.
 * @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely".
 * @param validAfter - First timestamp this UserOperation is valid.
 * @return the packed validation data.
 */
function _packValidationData(
    bool sigFailed,
    uint48 validUntil,
    uint48 validAfter
) pure returns (uint256) {
    return
        (sigFailed ?  SIG_VALIDATION_FAILED : SIG_VALIDATION_SUCCESS) |
        (uint256(validUntil) << 160) |
        (uint256(validAfter) << (160 + 48));
}

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 *
 * @param data - the calldata bytes array to perform keccak on.
 * @return ret - the keccak hash of the 'data' array.
 */
function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
    assembly ("memory-safe") {
        let mem := mload(0x40)
        let len := data.length
        calldatacopy(mem, data.offset, len)
        ret := keccak256(mem, len)
    }
}

/**
 * @notice Computes the Keccak-256 hash of a slice of calldata, followed by an 8-byte suffix.
 * This function copies the first `len` bytes from the given calldata array `data` into memory.
 * The assembly code is equivalent to:
 *      keccak256(abi.encodePacked(data[0:len], suffix))
 * But more efficient, and doesn't move the free memory pointer, allowing the memory to be reused later.
 *
 * @param data   Calldata byte array to read from.
 * @param len    Number of bytes to copy from `data` starting at its offset.
 * @param suffix 8-byte value appended to the data bytes before hashing.
 *
 * @return ret The hash of (data[0:len] || suffix).
 */
function calldataKeccakWithSuffix(bytes calldata data, uint256 len, bytes8 suffix) pure returns (bytes32 ret) {
    assembly ("memory-safe") {
        let mem := mload(0x40)
        calldatacopy(mem, data.offset, len)
        mstore(add(mem, len), suffix)
        len := add(len, 8)
        ret := keccak256(mem, len)
    }
}

/**
 * Keccak function over paymaster data.
 * If data ends with `PAYMASTER_SIG_MAGIC`, then
 * read the previous 2 bytes as pmSignatureLength,
 * and ignore this suffix from the hash.
 * This means that the trailing pmSignatureLength+10 bytes are not covered by the UserOpHash, and thus are not signed.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 *
 * @param data - the calldata bytes array to perform keccak on.
 * @return ret - the keccak hash of the 'data' array.
 */
function paymasterDataKeccak(bytes calldata data) pure returns (bytes32 ret) {
    uint256 pmSignatureLength = data.getPaymasterSignatureLength();
    if (pmSignatureLength > 0) {
        unchecked {
            //keccak everything up to the paymasterSignature, but still append the sig magic.
            return calldataKeccakWithSuffix(data, data.length - (pmSignatureLength + UserOperationLib.PAYMASTER_SUFFIX_LEN), UserOperationLib.PAYMASTER_SIG_MAGIC);
        }
    }
    return calldataKeccak(data);
}


/**
 * The minimum of two numbers.
 * @param a - First number.
 * @param b - Second number.
 * @return - the minimum value.
 */
    function min(uint256 a, uint256 b) pure returns (uint256) {
        return a < b ? a : b;
    }

/**
 * standard solidity memory allocation finalization.
 * copied from solidity generated code
 * @param memPointer - The current memory pointer
 * @param allocationSize - Bytes allocated from memPointer.
 */
    function finalizeAllocation(uint256 memPointer, uint256 allocationSize) pure {

        assembly ("memory-safe"){
            finalize_allocation(memPointer, allocationSize)

            function finalize_allocation(memPtr, size) {
                let newFreePtr := add(memPtr, round_up_to_mul_of_32(size))
                mstore(64, newFreePtr)
            }

            function round_up_to_mul_of_32(value) -> result {
                result := and(add(value, 31), not(31))
            }
        }
    }

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

/**
 * @title IMpSmartWallet
 * @author stoneybro
 * @notice Interface for Mp Smart Wallet that the Intent Registry interacts with
 * @custom:security-contact [email protected]
 */
interface IMpSmartWallet {
    /*//////////////////////////////////////////////////////////////
                                TYPES
    //////////////////////////////////////////////////////////////*/

    /// @notice Jurisdiction codes for compliance tracking
    enum Jurisdiction {
        NONE,
        US_CA,
        US_NY,
        US_TX,
        US_FL,
        US_OTHER,
        UK,
        EU_DE,
        EU_FR,
        EU_OTHER,
        NG,
        SG,
        AE,
        OTHER
    }

    /// @notice Compliance categories for payment classification
    enum Category {
        NONE,
        PAYROLL_W2,
        PAYROLL_1099,
        CONTRACTOR,
        BONUS,
        INVOICE,
        VENDOR,
        GRANT,
        DIVIDEND,
        REIMBURSEMENT,
        OTHER
    }

    /// @notice Universal compliance metadata for jurisdiction-aware payment tracking
    /// @dev All array fields MUST match recipients.length for batch/recurring payments
    struct ComplianceMetadata {
        string[] entityIds;
        Jurisdiction[] jurisdictions;
        Category[] categories;
        string referenceId;
    }

    /*//////////////////////////////////////////////////////////////
                                FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Increases the committed funds for intents.
     * @param token The token address (address(0) for ETH).
     * @param amount The amount to add to committed funds.
     */
    function increaseCommitment(address token, uint256 amount) external;

    /**
     * @notice Decreases the committed funds after intent execution/cancellation.
     * @param token The token address (address(0) for ETH).
     * @param amount The amount to subtract from committed funds.
     */
    function decreaseCommitment(address token, uint256 amount) external;

    /**
     * @notice Executes a batch of transfers as part of an Mp intent.
     * @param token The token address (address(0) for ETH, token address for ERC20).
     * @param recipients The array of recipient addresses.
     * @param amounts The array of amounts corresponding to each recipient.
     * @param intentId The unique identifier for the intent being executed.
     * @param transactionCount The current transaction number within the intent.
     * @param revertOnFailure Whether to revert entire transaction on any failure.
     * @param compliance Compliance metadata for tracking.
     * @return failedAmount The total amount that failed to transfer (only in skip mode)
     */
    function executeBatchIntentTransfer(
        address token,
        address[] calldata recipients,
        uint256[] calldata amounts,
        bytes32 intentId,
        uint256 transactionCount,
        bool revertOnFailure,
        ComplianceMetadata calldata compliance
    ) external returns (uint256 failedAmount);

    /**
     * @notice Returns the available (uncommitted) balance for a specific token.
     * @param token The token address (address(0) for ETH, token address for ERC20).
     * @return The available balance.
     */
    function getAvailableBalance(address token) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 *
 * IMPORTANT: Deprecated. This storage-based reentrancy guard will be removed and replaced
 * by the {ReentrancyGuardTransient} variant in v6.0.
 *
 * @custom:stateless
 */
abstract contract ReentrancyGuard {
    using StorageSlot for bytes32;

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant REENTRANCY_GUARD_STORAGE =
        0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    /**
     * @dev A `view` only version of {nonReentrant}. Use to block view functions
     * from being called, preventing reading from inconsistent contract state.
     *
     * CAUTION: This is a "view" modifier and does not change the reentrancy
     * status. Use it only on view functions. For payable or non-payable functions,
     * use the standard {nonReentrant} modifier instead.
     */
    modifier nonReentrantView() {
        _nonReentrantBeforeView();
        _;
    }

    function _nonReentrantBeforeView() private view {
        if (_reentrancyGuardEntered()) {
            revert ReentrancyGuardReentrantCall();
        }
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        _nonReentrantBeforeView();

        // Any calls to nonReentrant after this point will fail
        _reentrancyGuardStorageSlot().getUint256Slot().value = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _reentrancyGuardStorageSlot().getUint256Slot().value == ENTERED;
    }

    function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
        return REENTRANCY_GUARD_STORAGE;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";
import {LowLevelCall} from "./LowLevelCall.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        if (addr == address(0)) {
            if (LowLevelCall.returnDataSize() == 0) {
                revert Errors.FailedDeployment();
            } else {
                LowLevelCall.bubbleRevert();
            }
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                     | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |---------------------|---------------------------------------------------------------------------|
            // | bytecodeHash        |                                                        CCCCCCCCCCCCC...CC |
            // | salt                |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer            | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF                |            FF                                                             |
            // |---------------------|---------------------------------------------------------------------------|
            // | memory              | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 0x55) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

File 14 of 23 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
     */
    function toHexString(bytes memory input) internal pure returns (string memory) {
        unchecked {
            bytes memory buffer = new bytes(2 * input.length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 0; i < input.length; ++i) {
                uint8 v = uint8(input[i]);
                buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
                buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
            }
            return string(buffer);
        }
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return Bytes.equal(bytes(a), bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i = 0; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

/* solhint-disable no-inline-assembly */

import "../interfaces/PackedUserOperation.sol";
import "./Helpers.sol";

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    error InvalidPaymasterSignatureLength(uint256 dataLength, uint256 pmSignatureLength);

    uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20;
    uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36;
    uint256 public constant PAYMASTER_DATA_OFFSET = 52;

    uint256 constant internal PAYMASTER_SIG_MAGIC_LEN = 8;
    uint256 constant internal PAYMASTER_SUFFIX_LEN = PAYMASTER_SIG_MAGIC_LEN + 2; // suffix length (signature length + magic)
    bytes8 constant internal  PAYMASTER_SIG_MAGIC = 0x22e325a297439656; // keccak("PaymasterSignature")[:8]
    uint256 constant internal MIN_PAYMASTER_DATA_WITH_SUFFIX_LEN = PAYMASTER_DATA_OFFSET + PAYMASTER_SUFFIX_LEN; // minimum length of paymasterData that can contain a paymaster signature.

    /**
     * Relayer/block builder might submit the TX with higher priorityFee,
     * but the user should not pay above what he signed for.
     * @param userOp - The user operation data.
     */
    function gasPrice(
        PackedUserOperation calldata userOp
    ) internal view returns (uint256) {
        unchecked {
            (uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees);
            return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
        }
    }

    bytes32 internal constant PACKED_USEROP_TYPEHASH =
    // solhint-disable-next-line gas-small-strings
    keccak256(
        "PackedUserOperation(address sender,uint256 nonce,bytes initCode,bytes callData,bytes32 accountGasLimits,uint256 preVerificationGas,bytes32 gasFees,bytes paymasterAndData)"
    );

    /**
     * Pack the user operation data into bytes for hashing.
     * @param userOp - The user operation data.
     * @param overrideInitCodeHash - If set, encode this instead of the initCode field in the userOp.
     */
    function encode(
        PackedUserOperation calldata userOp,
        bytes32 overrideInitCodeHash
    ) internal pure returns (bytes memory ret) {
        address sender = userOp.sender;
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = overrideInitCodeHash != 0 ? overrideInitCodeHash : calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        bytes32 accountGasLimits = userOp.accountGasLimits;
        uint256 preVerificationGas = userOp.preVerificationGas;
        bytes32 gasFees = userOp.gasFees;
        bytes32 hashPaymasterAndData = paymasterDataKeccak(userOp.paymasterAndData);

        return abi.encode(
            UserOperationLib.PACKED_USEROP_TYPEHASH,
            sender, nonce,
            hashInitCode, hashCallData,
            accountGasLimits, preVerificationGas, gasFees,
            hashPaymasterAndData
        );
    }

    function unpackUints(
        bytes32 packed
    ) internal pure returns (uint256 high128, uint256 low128) {
        return (unpackHigh128(packed), unpackLow128(packed));
    }

    // Unpack just the high 128-bits from a packed value
    function unpackHigh128(bytes32 packed) internal pure returns (uint256) {
        return uint256(packed) >> 128;
    }

    // Unpack just the low 128-bits from a packed value
    function unpackLow128(bytes32 packed) internal pure returns (uint256) {
        return uint128(uint256(packed));
    }

    function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackHigh128(userOp.gasFees);
    }

    function unpackMaxFeePerGas(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackLow128(userOp.gasFees);
    }

    function unpackVerificationGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackHigh128(userOp.accountGasLimits);
    }

    function unpackCallGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return unpackLow128(userOp.accountGasLimits);
    }

    function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET]));
    }

    function unpackPostOpGasLimit(PackedUserOperation calldata userOp)
    internal pure returns (uint256) {
        return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]));
    }

    function unpackPaymasterStaticFields(
        bytes calldata paymasterAndData
    ) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) {
        return (
            address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])),
            uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])),
            uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]))
        );
    }

    /**
     * return the length of the paymaster signature appended in paymasterAndData.
     * return 0 if no signature.
     * note that this signature is not part of the userOpHash, and thus not signed by the user.
     */
    function getPaymasterSignatureLength(
        bytes calldata paymasterAndData
    ) internal pure returns (uint256 paymasterSignatureLength) {
        unchecked {
            uint256 dataLength = paymasterAndData.length;
            if (dataLength < MIN_PAYMASTER_DATA_WITH_SUFFIX_LEN) {
                return 0;
            }
            bytes8 suffix8 = bytes8(paymasterAndData[dataLength - PAYMASTER_SIG_MAGIC_LEN : dataLength]);
            if (suffix8 != PAYMASTER_SIG_MAGIC) {
                return 0;
            }
            uint256 pmSignatureLength = uint16(bytes2(paymasterAndData[dataLength - PAYMASTER_SUFFIX_LEN :]));

            if (pmSignatureLength > dataLength - MIN_PAYMASTER_DATA_WITH_SUFFIX_LEN) {
                // paymasterSignature cannot extend before the paymasterData
                revert InvalidPaymasterSignatureLength(dataLength, pmSignatureLength);
            }
            return pmSignatureLength;
        }
    }

    /**
     * return the paymasterData that is signed by the user's signature
     * this data excludes the paymaster signature appended at the end of paymasterAndData
     */
    function getSignedPaymasterData(
        bytes calldata paymasterAndData
    ) internal pure returns (bytes calldata signedPaymasterData) {
        uint256 sigLen = getPaymasterSignatureLength(paymasterAndData);
        uint256 paymasterDataLen = paymasterAndData.length;
        if (sigLen != 0) {
            paymasterDataLen -= (sigLen + PAYMASTER_SUFFIX_LEN);
        }
        return paymasterAndData[PAYMASTER_DATA_OFFSET : paymasterDataLen];
    }

    /**
     * decodes dynamic signature appended to paymasterAndData
     * note that this signature is not part of the userOpHash, and thus not signed by the user.
     * @param paymasterAndData - The paymasterAndData field of the user operation
     * @return pmSig the paymaster-specific signature (may be empty)
     */
    function getPaymasterSignature(bytes calldata paymasterAndData
    ) internal pure returns (bytes calldata pmSig) {
        uint256 len = getPaymasterSignatureLength(paymasterAndData);
        return getPaymasterSignatureWithLength(paymasterAndData, len);
    }

    /**
     * decodes dynamic signature appended to paymasterAndData
     * Assumes the length field is valid, and was obtained from getPaymasterSignatureLength
     * @param paymasterAndData - The paymasterAndData field of the user operation
     * @param paymasterSignatureLength - length of the signature (as returned by getPaymasterSignatureLength)
     * @return pmSig the paymaster-specific signature (may be empty)
     */
    function getPaymasterSignatureWithLength(
        bytes calldata paymasterAndData, uint256 paymasterSignatureLength
    ) internal pure returns (bytes calldata pmSig) {
        if (paymasterSignatureLength == 0) {
            return paymasterAndData[0 : 0];
        }
        uint256 dataLen = paymasterAndData.length;
        unchecked {
            uint256 pmSigEnd = dataLen - PAYMASTER_SUFFIX_LEN;
            uint256 pmSigBegin =  pmSigEnd - paymasterSignatureLength;
            return paymasterAndData[pmSigBegin : pmSigEnd];
        }
    }

    /**
     * encode the paymaster signature as suffix to append to paymasterAndData
     * This method is a reference for off-chain encoding of paymaster signature.
     */
    function encodePaymasterSignature(bytes calldata paymasterSignature) internal pure returns (bytes memory) {
        uint256 len = paymasterSignature.length;
        if (len == 0) {
            return "";
        }

        return abi.encodePacked(
            paymasterSignature,
            uint16(len),
            PAYMASTER_SIG_MAGIC
        );
    }

    /**
     * Hash the user operation data.
     * @param userOp - The user operation data.
     * @param overrideInitCodeHash - If set, the initCode hash will be replaced with this value just for UserOp hashing.
     */
    function hash(
        PackedUserOperation calldata userOp,
        bytes32 overrideInitCodeHash
    ) internal pure returns (bytes32) {
        return keccak256(encode(userOp, overrideInitCodeHash));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/LowLevelCall.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of low level call functions that implement different calling strategies to deal with the return data.
 *
 * WARNING: Using this library requires an advanced understanding of Solidity and how the EVM works. It is recommended
 * to use the {Address} library instead.
 */
library LowLevelCall {
    /// @dev Performs a Solidity function call using a low level `call` and ignoring the return data.
    function callNoReturn(address target, bytes memory data) internal returns (bool success) {
        return callNoReturn(target, 0, data);
    }

    /// @dev Same as {callNoReturn}, but allows to specify the value to be sent in the call.
    function callNoReturn(address target, uint256 value, bytes memory data) internal returns (bool success) {
        assembly ("memory-safe") {
            success := call(gas(), target, value, add(data, 0x20), mload(data), 0x00, 0x00)
        }
    }

    /// @dev Performs a Solidity function call using a low level `call` and returns the first 64 bytes of the result
    /// in the scratch space of memory. Useful for functions that return a tuple of single-word values.
    ///
    /// WARNING: Do not assume that the results are zero if `success` is false. Memory can be already allocated
    /// and this function doesn't zero it out.
    function callReturn64Bytes(
        address target,
        bytes memory data
    ) internal returns (bool success, bytes32 result1, bytes32 result2) {
        return callReturn64Bytes(target, 0, data);
    }

    /// @dev Same as {callReturnBytes32Pair}, but allows to specify the value to be sent in the call.
    function callReturn64Bytes(
        address target,
        uint256 value,
        bytes memory data
    ) internal returns (bool success, bytes32 result1, bytes32 result2) {
        assembly ("memory-safe") {
            success := call(gas(), target, value, add(data, 0x20), mload(data), 0x00, 0x40)
            result1 := mload(0x00)
            result2 := mload(0x20)
        }
    }

    /// @dev Performs a Solidity function call using a low level `staticcall` and ignoring the return data.
    function staticcallNoReturn(address target, bytes memory data) internal view returns (bool success) {
        assembly ("memory-safe") {
            success := staticcall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x00)
        }
    }

    /// @dev Performs a Solidity function call using a low level `staticcall` and returns the first 64 bytes of the result
    /// in the scratch space of memory. Useful for functions that return a tuple of single-word values.
    ///
    /// WARNING: Do not assume that the results are zero if `success` is false. Memory can be already allocated
    /// and this function doesn't zero it out.
    function staticcallReturn64Bytes(
        address target,
        bytes memory data
    ) internal view returns (bool success, bytes32 result1, bytes32 result2) {
        assembly ("memory-safe") {
            success := staticcall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x40)
            result1 := mload(0x00)
            result2 := mload(0x20)
        }
    }

    /// @dev Performs a Solidity function call using a low level `delegatecall` and ignoring the return data.
    function delegatecallNoReturn(address target, bytes memory data) internal returns (bool success) {
        assembly ("memory-safe") {
            success := delegatecall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x00)
        }
    }

    /// @dev Performs a Solidity function call using a low level `delegatecall` and returns the first 64 bytes of the result
    /// in the scratch space of memory. Useful for functions that return a tuple of single-word values.
    ///
    /// WARNING: Do not assume that the results are zero if `success` is false. Memory can be already allocated
    /// and this function doesn't zero it out.
    function delegatecallReturn64Bytes(
        address target,
        bytes memory data
    ) internal returns (bool success, bytes32 result1, bytes32 result2) {
        assembly ("memory-safe") {
            success := delegatecall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x40)
            result1 := mload(0x00)
            result2 := mload(0x20)
        }
    }

    /// @dev Returns the size of the return data buffer.
    function returnDataSize() internal pure returns (uint256 size) {
        assembly ("memory-safe") {
            size := returndatasize()
        }
    }

    /// @dev Returns a buffer containing the return data from the last call.
    function returnData() internal pure returns (bytes memory result) {
        assembly ("memory-safe") {
            result := mload(0x40)
            mstore(result, returndatasize())
            returndatacopy(add(result, 0x20), 0x00, returndatasize())
            mstore(0x40, add(result, add(0x20, returndatasize())))
        }
    }

    /// @dev Revert with the return data from the last call.
    function bubbleRevert() internal pure {
        assembly ("memory-safe") {
            let fmp := mload(0x40)
            returndatacopy(fmp, 0x00, returndatasize())
            revert(fmp, returndatasize())
        }
    }

    function bubbleRevert(bytes memory returndata) internal pure {
        assembly ("memory-safe") {
            revert(add(returndata, 0x20), mload(returndata))
        }
    }
}

File 19 of 23 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }

    /**
     * @dev Counts the number of leading zero bits in a uint256.
     */
    function clz(uint256 x) internal pure returns (uint256) {
        return ternary(x == 0, 256, 255 - log2(x));
    }
}

File 20 of 23 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";

/**
 * @dev Bytes operations.
 */
library Bytes {
    /**
     * @dev Forward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the first instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return indexOf(buffer, s, 0);
    }

    /**
     * @dev Forward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
     * * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        uint256 length = buffer.length;
        for (uint256 i = pos; i < length; ++i) {
            if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
                return i;
            }
        }
        return type(uint256).max;
    }

    /**
     * @dev Backward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the last instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return lastIndexOf(buffer, s, type(uint256).max);
    }

    /**
     * @dev Backward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
     * * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        unchecked {
            uint256 length = buffer.length;
            for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
                if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
                    return i - 1;
                }
            }
            return type(uint256).max;
        }
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
     * memory.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return slice(buffer, start, buffer.length);
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
     * memory. The `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        bytes memory result = new bytes(end - start);
        assembly ("memory-safe") {
            mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
        }

        return result;
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return splice(buffer, start, buffer.length);
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
     * `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        assembly ("memory-safe") {
            mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
            mstore(buffer, sub(end, start))
        }

        return buffer;
    }

    /**
     * @dev Concatenate an array of bytes into a single bytes object.
     *
     * For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
     * `abi.encodePacked`.
     *
     * NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
     * significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
     */
    function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
        uint256 length = 0;
        for (uint256 i = 0; i < buffers.length; ++i) {
            length += buffers[i].length;
        }

        bytes memory result = new bytes(length);

        uint256 offset = 0x20;
        for (uint256 i = 0; i < buffers.length; ++i) {
            bytes memory input = buffers[i];
            assembly ("memory-safe") {
                mcopy(add(result, offset), add(input, 0x20), mload(input))
            }
            unchecked {
                offset += input.length;
            }
        }

        return result;
    }

    /**
     * @dev Returns true if the two byte buffers are equal.
     */
    function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
        return a.length == b.length && keccak256(a) == keccak256(b);
    }

    /**
     * @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
     * Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
     */
    function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
        value = // swap bytes
            ((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
        value = // swap 8-byte long pairs
            ((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
            ((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
        return (value >> 128) | (value << 128); // swap 16-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 128-bit values.
    function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
        value = // swap bytes
            ((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
        return (value >> 64) | (value << 64); // swap 8-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 64-bit values.
    function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
        value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
        value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
        return (value >> 32) | (value << 32); // swap 4-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 32-bit values.
    function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
        value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
        return (value >> 16) | (value << 16); // swap 2-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 16-bit values.
    function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
        return (value >> 8) | (value << 8);
    }

    /**
     * @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
     * if the buffer is all zeros.
     */
    function clz(bytes memory buffer) internal pure returns (uint256) {
        for (uint256 i = 0; i < buffer.length; i += 0x20) {
            bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
            if (chunk != bytes32(0)) {
                return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
            }
        }
        return 8 * buffer.length;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@chainlink/contracts/=lib/chainlink-brownie-contracts/contracts/",
    "@account-abstraction/contracts/=lib/account-abstraction/contracts/",
    "account-abstraction/=lib/account-abstraction/contracts/",
    "chainlink-brownie-contracts/=lib/chainlink-brownie-contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/openzeppelin-contracts/lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": true
}

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_implementation","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"MpSmartWalletFactory__ImplementationUndeployed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"AccountCreated","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"createSmartAccount","outputs":[{"internalType":"address","name":"account","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"getPredictedAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserClone","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userClones","outputs":[{"internalType":"address","name":"clone","type":"address"}],"stateMutability":"view","type":"function"}]

60a03461008e57601f61048038819003918201601f19168301916001600160401b038311848410176100925780849260209460405283398101031261008e57516001600160a01b038116810361008e57803b1561007f576080526040516103d990816100a782396080518181816101110152818161014701526101b90152f35b6313eb50c160e01b5f5260045ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe6080806040526004361015610012575f80fd5b5f3560e01c9081635c60da1b146101355750806380bd9445146100535780638634a76e146100db578063c89cda6e1461009a5763d063c2cc14610053575f80fd5b34610096576020366003190112610096576004356001600160a01b03811690819003610096575f525f602052602060018060a01b0360405f205416604051908152f35b5f80fd5b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c96020916101ac565b6040516001600160a01b039091168152f35b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c961010d60209261030f565b30907f0000000000000000000000000000000000000000000000000000000000000000610341565b34610096575f366003190112610096577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90601f8019910116810190811067ffffffffffffffff82111761019857604052565b634e487b7160e01b5f52604160045260245ffd5b905f6101b78361030f565b7f00000000000000000000000000000000000000000000000000000000000000006101e3308383610341565b803b610308575080763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff6e5af43d82803e903d91602b57fd5bf39360881c16175f5260781b17602052603760095ff56001600160a01b0381169081156102f95793813b156100965760405163189acdbd60e31b81526001600160a01b0390911660048201819052925f8260248183875af180156102ee576102bc575b83815260208190526040812080546001600160a01b031916841790557fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc8915080a3565b505f6102c791610176565b7fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc85f610279565b6040513d5f823e3d90fd5b63b06ebf3d60e01b5f5260045ffd5b9450505050565b60405160208101916bffffffffffffffffffffffff199060601b1682526014815261033b603482610176565b51902090565b60405160388101939093526f5af43d82803e903d91602b57fd5bf3ff60248401526014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b03169056fea26469706673582212209ca41669d5879847ad2b9e3b18ecc677ce772afd2200daa6e7f720c7b211aebe64736f6c634300081c003300000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c9081635c60da1b146101355750806380bd9445146100535780638634a76e146100db578063c89cda6e1461009a5763d063c2cc14610053575f80fd5b34610096576020366003190112610096576004356001600160a01b03811690819003610096575f525f602052602060018060a01b0360405f205416604051908152f35b5f80fd5b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c96020916101ac565b6040516001600160a01b039091168152f35b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c961010d60209261030f565b30907f00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe610341565b34610096575f366003190112610096577f00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe6001600160a01b03168152602090f35b90601f8019910116810190811067ffffffffffffffff82111761019857604052565b634e487b7160e01b5f52604160045260245ffd5b905f6101b78361030f565b7f00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe6101e3308383610341565b803b610308575080763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff6e5af43d82803e903d91602b57fd5bf39360881c16175f5260781b17602052603760095ff56001600160a01b0381169081156102f95793813b156100965760405163189acdbd60e31b81526001600160a01b0390911660048201819052925f8260248183875af180156102ee576102bc575b83815260208190526040812080546001600160a01b031916841790557fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc8915080a3565b505f6102c791610176565b7fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc85f610279565b6040513d5f823e3d90fd5b63b06ebf3d60e01b5f5260045ffd5b9450505050565b60405160208101916bffffffffffffffffffffffff199060601b1682526014815261033b603482610176565b51902090565b60405160388101939093526f5af43d82803e903d91602b57fd5bf3ff60248401526014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b03169056fea26469706673582212209ca41669d5879847ad2b9e3b18ecc677ce772afd2200daa6e7f720c7b211aebe64736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe

-----Decoded View---------------
Arg [0] : _implementation (address): 0x37c5c677146A19e61295E40F0518bAf3f94305fE

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0xd63E841AAb10D118a3cb541FbeF011eBae6437C6
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.