Source Code
Overview
MNT Balance
0 MNT
More Info
ContractCreator
Multichain Info
N/A
| Transaction Hash |
Method
|
Block
|
From
|
To
|
Amount
|
||||
|---|---|---|---|---|---|---|---|---|---|
Latest 6 internal transactions
Advanced mode:
| Parent Transaction Hash | Block | From | To | Amount | ||
|---|---|---|---|---|---|---|
| 33515088 | 14 days ago | Contract Creation | 0 MNT | |||
| 33480264 | 14 days ago | Contract Creation | 0 MNT | |||
| 33478690 | 14 days ago | Contract Creation | 0 MNT | |||
| 33473975 | 15 days ago | Contract Creation | 0 MNT | |||
| 33471710 | 15 days ago | Contract Creation | 0 MNT | |||
| 33448457 | 15 days ago | Contract Creation | 0 MNT |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
MpSmartWalletFactory
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import {MpSmartWallet} from "./MpSmartWallet.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
/**
* @title Mp Smart Wallet Factory
* @author stoneybro
* @notice Factory for deploying ERC-1167 minimal proxy clones of Mp Smart Wallet.
* @custom:security-contact [email protected]
*/
contract MpSmartWalletFactory {
/*//////////////////////////////////////////////////////////////
STATE VARIABLES
//////////////////////////////////////////////////////////////*/
/// @notice Address of the ERC-1167 implementation used as implementation for new accounts.
address public immutable implementation;
/// @notice Mapping from user EOA to deployed SmartAccount clone.
mapping(address user => address clone) public userClones;
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
/**
* @param account The address of the created account.
* @param owner The initial owner of the account.
* @notice Emitted when a new account is created.
*/
event AccountCreated(address indexed account, address indexed owner);
/*//////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////*/
/**
* @notice Thrown when trying to construct with an implementation that is not deployed.
*/
error MpSmartWalletFactory__ImplementationUndeployed();
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
/**
* @notice Factory constructor used to initialize the implementation address to use for future
* MpSmartWallet deployments.
*
* @param _implementation The address of the MpSmartWallet implementation which new accounts will proxy to.
*/
constructor(address _implementation) {
if (_implementation.code.length == 0) {
revert MpSmartWalletFactory__ImplementationUndeployed();
}
implementation = _implementation;
}
/*//////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Deploys and initializes a deterministic MpSmartWallet for a specific owner, or returns
* the existing account if already deployed.
*
* @dev Deployed as an ERC-1167 minimal proxy whose implementation is `this.implementation`.
* Uses `owner` to generate a unique salt, ensuring one wallet per address.
* This function is compatible with ERC-4337 initCode deployment.
*
* @param owner The address that will own the smart account.
*
* @return account The address of the ERC-1167 proxy created for `owner`, or the existing
* account address if already deployed.
*/
function createSmartAccount(address owner) public returns (address account) {
bytes32 salt = _getSalt(owner);
address predictedAddress = Clones.predictDeterministicAddress(implementation, salt, address(this));
// Return existing account if already deployed
if (predictedAddress.code.length != 0) {
return predictedAddress;
}
// Deploy new account
account = Clones.cloneDeterministic(implementation, salt);
// Initialize with specified owner
MpSmartWallet(payable(account)).initialize(owner);
// Record mapping and emit after successful initialize
userClones[owner] = account;
emit AccountCreated(account, owner);
}
/**
* @notice Returns the deterministic address of the account that would be created for a given owner.
*
* @param owner The address of the owner for which to predict the account address.
*
* @return The predicted account deployment address.
*/
function getPredictedAddress(address owner) external view returns (address) {
bytes32 salt = _getSalt(owner);
return Clones.predictDeterministicAddress(implementation, salt, address(this));
}
/**
* @notice Returns the deployed account for a given owner or zero if none.
*
* @param user The address of the owner for which to retrieve the account.
*
* @return The deployed account address.
*/
function getUserClone(address user) external view returns (address) {
return userClones[user];
}
/**
* @notice Returns the create2 salt for `Clones.predictDeterministicAddress`.
*
* @param owner The address of the owner.
*
* @return The computed salt.
*/
function _getSalt(address owner) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(owner));
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import {IAccount} from "@account-abstraction/contracts/interfaces/IAccount.sol";
import {PackedUserOperation} from "@account-abstraction/contracts/interfaces/PackedUserOperation.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {_packValidationData} from "@account-abstraction/contracts/core/Helpers.sol";
import {IMpSmartWallet} from "./IMpSmartWallet.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @title Mp Smart Wallet
* @author stoneybro
* @notice A smart contract wallet implementation compliant with ERC-4337.
* @dev Implements IAccount from account-abstraction. Supports Mp Intent Registry for automated payments.
* @custom:security-contact [email protected]
*/
contract MpSmartWallet is IAccount, IMpSmartWallet, ReentrancyGuard, Initializable {
/*//////////////////////////////////////////////////////////////
TYPES
//////////////////////////////////////////////////////////////*/
/// @notice Represents a call to make.
struct Call {
/// @dev The address to call.
address target;
/// @dev The value to send when making the call.
uint256 value;
/// @dev The data of the call.
bytes data;
}
/// @notice ComplianceMetadata is defined in IMpSmartWallet interface
/*//////////////////////////////////////////////////////////////
STATE VARIABLES
//////////////////////////////////////////////////////////////*/
/// @notice Account owner address. Signer of UserOperations.
address public s_owner;
/// @notice Mp intent registry authorized to trigger scheduled transfers.
address public immutable intentRegistry;
/// @notice Amount of funds committed to intents per token (locked)
/// @dev address(0) represents ETH, other addresses represent ERC20 tokens
mapping(address => uint256) public s_committedFunds;
/// @notice EIP-1271 magic return value for valid signatures.
bytes4 internal constant _EIP1271_MAGICVALUE = 0x1626ba7e;
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
/// @notice Emitted when the committed funds are increased.
event CommitmentIncreased(address indexed token, uint256 amount, uint256 newTotal);
/// @notice Emitted when the committed funds are decreased.
event CommitmentDecreased(address indexed token, uint256 amount, uint256 newTotal);
/// @notice Emitted when a transfer fails during intent execution.
event TransferFailed(
bytes32 indexed intentId,
uint256 indexed transactionCount,
address indexed recipient,
address token,
uint256 amount
);
/// @notice Emitted when a single execute is performed
event Executed(address indexed target, uint256 value, bytes data);
/// @notice Emitted when a batch execute is performed
event ExecutedBatch(uint256 indexed batchSize, uint256 totalValue);
/// @notice Emitted when a transaction includes compliance metadata
event ComplianceExecuted(
bytes32 indexed txType,
string[] entityIds,
IMpSmartWallet.Jurisdiction[] jurisdictions,
IMpSmartWallet.Category[] categories,
string referenceId
);
/// @notice The event emitted when a wallet action is performed
event WalletAction(
address indexed initiator,
address indexed target,
uint256 value,
bytes4 indexed selector,
bool success,
bytes32 actionType
);
/// @notice Emitted when an intent batch transfer is executed
event IntentBatchTransferExecuted(
bytes32 indexed intentId,
uint256 indexed transactionCount,
address indexed token,
uint256 recipientCount,
uint256 totalValue,
uint256 failedAmount
);
/// @notice Emitted for each successful transfer in an intent batch
event IntentTransferSuccess(
bytes32 indexed intentId,
uint256 indexed transactionCount,
address indexed recipient,
address token,
uint256 amount
);
/*//////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////*/
/// @notice Thrown when caller is not the EntryPoint.
error MpSmartWallet__NotFromEntryPoint();
/// @notice Thrown when caller is neither EntryPoint nor owner.
error MpSmartWallet__Unauthorized();
/// @notice Thrown when owner is zero address.
error MpSmartWallet__OwnerIsZeroAddress();
/// @notice Thrown when registry address is zero.
error MpSmartWallet__IntentRegistryZeroAddress();
/// @notice Thrown when batch inputs are invalid.
error MpSmartWallet__InvalidBatchInput();
/// @notice Thrown when a transfer fails.
error MpSmartWallet__TransferFailed(address recipient, address token, uint256 amount);
/// @notice Thrown when there are insufficient uncommitted funds.
error MpSmartWallet__InsufficientUncommittedFunds();
/// @notice Thrown when caller is not the registry.
error MpSmartWallet__NotFromRegistry();
/// @notice commitment decrease is more than commited balance
error MpSmartWallet__InvalidCommitmentDecrease();
/*//////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////*/
/// @notice Reverts if the caller is not the EntryPoint.
modifier onlyEntryPoint() {
if (msg.sender != entryPoint()) {
revert MpSmartWallet__NotFromEntryPoint();
}
_;
}
/// @notice Reverts if the caller is neither the EntryPoint nor the owner.
modifier onlyEntryPointOrOwner() {
if (msg.sender != entryPoint() && msg.sender != s_owner) {
revert MpSmartWallet__Unauthorized();
}
_;
}
/// @notice Reverts if the caller is not the registry.
modifier onlyRegistry() {
if (msg.sender != intentRegistry) {
revert MpSmartWallet__NotFromRegistry();
}
_;
}
/**
* @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
*
* @dev Subclass MAY override this modifier for better funds management (e.g. send to the
* EntryPoint more than the minimum required, so that in future transactions it will not
* be required to send again).
*
* @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
* MAY be zero, in case there is enough deposit, or the userOp has a
* paymaster.
*/
modifier payPrefund(uint256 missingAccountFunds) {
_;
assembly ("memory-safe") {
if missingAccountFunds {
// Ignore failure (it's EntryPoint's job to verify, not the account's).
pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
}
}
}
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
/// @notice Constructor prevents initialization of implementation contract.
constructor(address registry) {
if (registry == address(0)) revert MpSmartWallet__IntentRegistryZeroAddress();
intentRegistry = registry;
_disableInitializers();
}
/**
* @notice Initializes the account with the owner.
*
* @dev Reverts if the account has already been initialized.
*
* @param _owner Address that will own this account and sign UserOperations.
*/
function initialize(address _owner) external initializer {
if (_owner == address(0)) revert MpSmartWallet__OwnerIsZeroAddress();
s_owner = _owner;
}
/*//////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @inheritdoc IAccount
*
* @notice ERC-4337 `validateUserOp` method. The EntryPoint will call this to validate
* the UserOperation before execution.
*
* @dev Signature failure should be reported by returning 1. This allows making a "simulation call"
* without a valid signature. Other failures should still revert.
*
* @param userOp The `UserOperation` to validate.
* @param userOpHash The hash of the `UserOperation`, computed by EntryPoint.
* @param missingAccountFunds The missing account funds that must be deposited on the EntryPoint.
*
* @return validationData The encoded `ValidationData` structure:
* `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
*
*/
function validateUserOp(PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
external
override
onlyEntryPoint
payPrefund(missingAccountFunds)
returns (uint256 validationData)
{
// Apply EIP-191 prefix to match how wallets sign messages
bytes32 ethSignedMessageHash = MessageHashUtils.toEthSignedMessageHash(userOpHash);
(address signer, ECDSA.RecoverError err,) = ECDSA.tryRecover(ethSignedMessageHash, userOp.signature);
if (err != ECDSA.RecoverError.NoError) {
return _packValidationData(true, 0, 0);
}
if (signer != s_owner) {
return _packValidationData(true, 0, 0);
}
return _packValidationData(false, 0, 0);
}
/**
* @notice Increases the committed funds for intents.
* @dev Only callable by the registry.
* @param token The token address (address(0) for ETH).
* @param amount The amount to add to committed funds.
*/
function increaseCommitment(address token, uint256 amount) external onlyRegistry {
s_committedFunds[token] += amount;
emit CommitmentIncreased(token, amount, s_committedFunds[token]);
}
/**
* @notice Decreases the committed funds after intent execution/cancellation.
* @dev Only callable by the registry.
* @param token The token address (address(0) for ETH).
* @param amount The amount to subtract from committed funds.
*/
function decreaseCommitment(address token, uint256 amount) external onlyRegistry {
if (amount > s_committedFunds[token]) {
revert MpSmartWallet__InvalidCommitmentDecrease();
}
s_committedFunds[token] -= amount;
emit CommitmentDecreased(token, amount, s_committedFunds[token]);
}
/**
* @notice Executes a single call from this account.
*
* @dev Can only be called by the EntryPoint or the owner of this account.
* For ETH transfers, checks uncommitted funds. For token approvals/transfers,
* commitment checking happens at intent execution level.
*
* @param target The address to call.
* @param value The value to send with the call.
* @param data The data of the call.
*/
function execute(address target, uint256 value, bytes calldata data)
external
payable
nonReentrant
onlyEntryPointOrOwner
{
_checkCommitment(address(0), value);
bytes4 selector = data.length >= 4 ? bytes4(data[:4]) : bytes4(0);
_call(target, value, data);
emit WalletAction(msg.sender, target, value, selector, true, "EXECUTE");
emit Executed(target, value, data);
}
/**
* @notice Executes a single call with compliance metadata.
* @dev Can only be called by the EntryPoint or the owner of this account.
* @param target The address to call.
* @param value The value to send with the call.
* @param data The data of the call.
* @param compliance Compliance metadata for tracking.
*/
function executeWithCompliance(
address target,
uint256 value,
bytes calldata data,
IMpSmartWallet.ComplianceMetadata calldata compliance
) external payable nonReentrant onlyEntryPointOrOwner {
_checkCommitment(address(0), value);
bytes4 selector = data.length >= 4 ? bytes4(data[:4]) : bytes4(0);
_call(target, value, data);
emit WalletAction(msg.sender, target, value, selector, true, "EXECUTE");
emit Executed(target, value, data);
emit ComplianceExecuted(
"SINGLE", compliance.entityIds, compliance.jurisdictions, compliance.categories, compliance.referenceId
);
}
/**
* @notice Executes a batch of calls from this account.
*
* @dev Can only be called by the EntryPoint or the owner of this account.
*
* @param calls The list of `Call`s to execute.
*/
function executeBatch(Call[] calldata calls) external payable nonReentrant onlyEntryPointOrOwner {
uint256 totalValue = 0;
for (uint256 i; i < calls.length; i++) {
totalValue += calls[i].value;
}
_checkCommitment(address(0), totalValue);
for (uint256 i; i < calls.length; i++) {
bytes4 selector = calls[i].data.length >= 4 ? bytes4(calls[i].data[:4]) : bytes4(0);
_call(calls[i].target, calls[i].value, calls[i].data);
emit WalletAction(msg.sender, calls[i].target, calls[i].value, selector, true, "BATCH");
}
emit ExecutedBatch(calls.length, totalValue);
}
/**
* @notice Executes a batch of calls with compliance metadata.
* @dev Can only be called by the EntryPoint or the owner of this account.
* @param calls The list of `Call`s to execute.
* @param compliance Compliance metadata for tracking.
*/
function executeBatchWithCompliance(Call[] calldata calls, IMpSmartWallet.ComplianceMetadata calldata compliance)
external
payable
nonReentrant
onlyEntryPointOrOwner
{
uint256 totalValue = 0;
for (uint256 i; i < calls.length; i++) {
totalValue += calls[i].value;
}
_checkCommitment(address(0), totalValue);
for (uint256 i; i < calls.length; i++) {
bytes4 selector = calls[i].data.length >= 4 ? bytes4(calls[i].data[:4]) : bytes4(0);
_call(calls[i].target, calls[i].value, calls[i].data);
emit WalletAction(msg.sender, calls[i].target, calls[i].value, selector, true, "BATCH");
}
emit ExecutedBatch(calls.length, totalValue);
emit ComplianceExecuted(
"BATCH", compliance.entityIds, compliance.jurisdictions, compliance.categories, compliance.referenceId
);
}
/**
* @notice Executes a batch of transfers as part of an Mp intent.
*
* @param token The token address (address(0) for ETH, token address for ERC20).
* @param recipients The array of recipient addresses.
* @param amounts The array of amounts corresponding to each recipient.
* @param intentId The unique identifier for the intent being executed.
* @param transactionCount The current transaction number within the intent.
* @param revertOnFailure Whether to revert entire transaction on any failure (true) or skip failed transfers (false).
* @param compliance Compliance metadata for tracking.
*
* @return failedAmount The total amount that failed to transfer (only in skip mode)
*/
function executeBatchIntentTransfer(
address token,
address[] calldata recipients,
uint256[] calldata amounts,
bytes32 intentId,
uint256 transactionCount,
bool revertOnFailure,
IMpSmartWallet.ComplianceMetadata calldata compliance
) external nonReentrant onlyRegistry returns (uint256 failedAmount) {
if (recipients.length == 0 || recipients.length != amounts.length) {
revert MpSmartWallet__InvalidBatchInput();
}
uint256 totalValue = 0;
uint256 totalFailed = 0;
for (uint256 i; i < recipients.length; i++) {
address recipient = recipients[i];
uint256 amount = amounts[i];
if (recipient == address(0) || amount == 0) {
revert MpSmartWallet__InvalidBatchInput();
}
totalValue += amount;
bool success;
if (token == address(0)) {
// ETH transfer
(success,) = recipient.call{value: amount}("");
} else {
// ERC20 token transfer
try IERC20(token).transfer(recipient, amount) returns (bool result) {
success = result;
} catch {
success = false;
}
}
if (!success) {
totalFailed += amount;
emit TransferFailed(intentId, transactionCount, recipient, token, amount);
if (revertOnFailure) {
// Atomic mode: revert entire transaction on any failure
revert MpSmartWallet__TransferFailed(recipient, token, amount);
}
// Skip mode: continue to next recipient
} else {
// Emit success event for tracking
emit IntentTransferSuccess(intentId, transactionCount, recipient, token, amount);
}
}
emit IntentBatchTransferExecuted(intentId, transactionCount, token, recipients.length, totalValue, totalFailed);
// Emit compliance event if categories are provided
if (compliance.categories.length > 0) {
emit ComplianceExecuted(
"INTENT", compliance.entityIds, compliance.jurisdictions, compliance.categories, compliance.referenceId
);
}
return totalFailed;
}
/**
* @notice Returns the available (uncommitted) balance for a specific token.
*
* @param token The token address (address(0) for ETH, token address for ERC20).
*
* @return The available balance.
*/
function getAvailableBalance(address token) external view returns (uint256) {
if (token == address(0)) {
// ETH balance
return address(this).balance - s_committedFunds[address(0)];
} else {
// ERC20 token balance
return IERC20(token).balanceOf(address(this)) - s_committedFunds[token];
}
}
/**
* @notice Returns the address of the EntryPoint v0.7.
*
* @return The address of the EntryPoint v0.7.
*/
function entryPoint() public pure returns (address) {
return 0x0000000071727De22E5E9d8BAf0edAc6f37da032;
}
/**
* @notice EIP-1271 signature validation for contract signatures and off-chain tooling.
*
* @dev Supports EIP-191 (`eth_sign`) prefix for message hashing.
*
* @param hash The hash that was signed.
* @param signature The signature bytes.
*
* @return magicValue `_EIP1271_MAGICVALUE` (0x1626ba7e) if valid, 0x00000000 otherwise.
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4) {
address recovered = ECDSA.recover(MessageHashUtils.toEthSignedMessageHash(hash), signature);
if (recovered == s_owner) {
return _EIP1271_MAGICVALUE;
}
return bytes4(0);
}
/**
* @notice Checks if a transfer value would exceed uncommitted funds for a specific token.
*
* @param token The token address (address(0) for ETH).
* @param value The value to check.
*/
function _checkCommitment(address token, uint256 value) internal view {
if (value > 0) {
uint256 availableBalance;
if (token == address(0)) {
availableBalance = address(this).balance - s_committedFunds[address(0)];
} else {
availableBalance = IERC20(token).balanceOf(address(this)) - s_committedFunds[token];
}
if (value > availableBalance) {
revert MpSmartWallet__InsufficientUncommittedFunds();
}
}
}
/**
* @notice Executes a call from this account.
*
* @dev Reverts with the original error if the call fails.
*
* @param target The address to call.
* @param value The value to send with the call.
* @param data The calldata to send.
*/
function _call(address target, uint256 value, bytes memory data) internal {
(bool success, bytes memory result) = target.call{value: value}(data);
if (!success) {
assembly ("memory-safe") {
revert(add(result, 32), mload(result))
}
}
}
/// @notice Allows the contract to receive ETH.
receive() external payable {}
/// @notice Fallback function to receive ETH.
fallback() external payable {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
error CloneArgumentsTooLong();
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create opcode, which should never revert.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(address implementation, uint256 value) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(232, shl(96, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(120, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple times will revert, since
* the clones cannot be deployed twice at the same address.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(232, shl(96, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(120, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create opcode, which should never revert.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*/
function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
return cloneWithImmutableArgs(implementation, args, 0);
}
/**
* @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
* parameter to send native currency to the new contract.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneWithImmutableArgs(
address implementation,
bytes memory args,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
assembly ("memory-safe") {
instance := create(value, add(bytecode, 0x20), mload(bytecode))
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
* `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
* at the same address.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal returns (address instance) {
return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
* but with a `value` parameter to send native currency to the new contract.
*
* WARNING: This function does not check if `implementation` has code. A clone that points to an address
* without code cannot be initialized. Initialization calls may appear to be successful when, in reality, they
* have no effect and leave the clone uninitialized, allowing a third party to initialize it later.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
uint256 value
) internal returns (address instance) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.deploy(value, salt, bytecode);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.computeAddress(salt, keccak256(bytecode), deployer);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
}
/**
* @dev Get the immutable args attached to a clone.
*
* - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
* function will return an empty array.
* - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
* `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
* creation.
* - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
* function should only be used to check addresses that are known to be clones.
*/
function fetchCloneArgs(address instance) internal view returns (bytes memory) {
bytes memory result = new bytes(instance.code.length - 0x2d); // revert if length is too short
assembly ("memory-safe") {
extcodecopy(instance, add(result, 0x20), 0x2d, mload(result))
}
return result;
}
/**
* @dev Helper that prepares the initcode of the proxy with immutable args.
*
* An assembly variant of this function requires copying the `args` array, which can be efficiently done using
* `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
* abi.encodePacked is more expensive but also more portable and easier to review.
*
* NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
* With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
*/
function _cloneCodeWithImmutableArgs(
address implementation,
bytes memory args
) private pure returns (bytes memory) {
if (args.length > 0x5fd3) revert CloneArgumentsTooLong();
return
abi.encodePacked(
hex"61",
uint16(args.length + 0x2d),
hex"3d81600a3d39f3363d3d373d3d3d363d73",
implementation,
hex"5af43d82803e903d91602b57fd5bf3",
args
);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./PackedUserOperation.sol";
interface IAccount {
/**
* Validate user's signature and nonce
* the entryPoint will make the call to the recipient only if this validation call returns successfully.
* signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
* This allows making a "simulation call" without a valid signature
* Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
*
* @dev Must validate caller is the entryPoint.
* Must validate the signature and nonce
* @param userOp - The operation that is about to be executed.
* @param userOpHash - Hash of the user's request data. can be used as the basis for signature.
* @param missingAccountFunds - Missing funds on the account's deposit in the entrypoint.
* This is the minimum amount to transfer to the sender(entryPoint) to be
* able to make the call. The excess is left as a deposit in the entrypoint
* for future calls. Can be withdrawn anytime using "entryPoint.withdrawTo()".
* In case there is a paymaster in the request (or the current deposit is high
* enough), this value will be zero.
* @return validationData - Packaged ValidationData structure. use `_packValidationData` and
* `_unpackValidationData` to encode and decode.
* <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure,
* otherwise, an address of an "aggregator" contract.
* <6-byte> validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely"
* <6-byte> validAfter - First timestamp this operation is valid
* If an account doesn't use time-range, it is enough to
* return SIG_VALIDATION_FAILED value (1) for signature failure.
* Note that the validation code cannot use block.timestamp (or block.number) directly.
*/
function validateUserOp(
PackedUserOperation calldata userOp,
bytes32 userOpHash,
uint256 missingAccountFunds
) external returns (uint256 validationData);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
/**
* User Operation struct
* @param sender - The sender account of this request.
* @param nonce - Unique value the sender uses to verify it is not a replay.
* @param initCode - If set, the account contract will be created by this constructor
* @param callData - The method call to execute on this account.
* @param accountGasLimits - Packed gas limits for validateUserOp and gas limit passed to the callData method call.
* @param preVerificationGas - Gas not calculated by the handleOps method, but added to the gas paid.
* Covers batch overhead.
* @param gasFees - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters.
* @param paymasterAndData - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data
* The paymaster will pay for the transaction instead of the sender.
* @param signature - Sender-verified signature over the entire request, the EntryPoint address and the chain ID.
*
*
* Field layout (enforced on-chain by EntryPoint):
* - sender: must already be deployed, or be the address that `initCode` will deploy; for EIP-7702 onboarding, `initCode = 0x7702 || optionalPayload`
* and `sender.code` must begin `0xef0100 || delegate`.
* - nonce = uint192(key) || uint64(sequence); EntryPoint tracks sequential values of `sequence` separately for each `key` value.
* - initCode:
* * non-7702: `initCode = factory(20) || factoryCalldata`; the factory must return `sender` and deploy code.
* * The `initCode` will be ignored if the `sender` is already deployed.
* * 7702: `0x7702` (magic prefix), optionally padded to 20 bytes and followed by the actual `initializationCode` data. This optional payload is executed on `sender` to finalise delegate setup.
* - callData: executed verbatim; if it starts with `IAccountExecute.executeUserOp.selector` (0x8dd7712f), EntryPoint wraps and forwards `(userOp, userOpHash)`.
* - accountGasLimits =`uint128(verificationGasLimit) || uint128(callGasLimit)`
* - gasFees = `uint128(maxPriorityFeePerGas) || uint128(maxFeePerGas)`
* - paymasterAndData (if non-empty) = `paymaster(20) || verificationGasLimit(16) || postOpGasLimit(16) || paymasterData`
* * an optional paymasterSignature may be added by appending:
* `paymasterSignature || uint16(paymasterSignature.length) || PAYMASTER_SIG_MAGIC (0x22e325a297439656)`
* - signature: Used by the account to validate the UserOperation against the `userOpHash`.
* The hash covers all UserOperation fields, except `signature` and `paymasterSignature`
*/
struct PackedUserOperation {
address sender;
uint256 nonce;
bytes initCode;
bytes callData;
bytes32 accountGasLimits;
uint256 preVerificationGas;
bytes32 gasFees;
bytes paymasterAndData;
bytes signature;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
* is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
* invalidation or nonces for replay protection.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
*
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Variant of {tryRecover} that takes a signature in calldata
*/
function tryRecoverCalldata(
bytes32 hash,
bytes calldata signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, calldata slices would work here, but are
// significantly more expensive (length check) than using calldataload in assembly.
assembly ("memory-safe") {
r := calldataload(signature.offset)
s := calldataload(add(signature.offset, 0x20))
v := byte(0, calldataload(add(signature.offset, 0x40)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
* is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
* invalidation or nonces for replay protection.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Variant of {recover} that takes a signature in calldata
*/
function recoverCalldata(bytes32 hash, bytes calldata signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecoverCalldata(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Parse a signature into its `v`, `r` and `s` components. Supports 65-byte and 64-byte (ERC-2098)
* formats. Returns (0,0,0) for invalid signatures.
*
* For 64-byte signatures, `v` is automatically normalized to 27 or 28.
* For 65-byte signatures, `v` is returned as-is and MUST already be 27 or 28 for use with ecrecover.
*
* Consider validating the result before use, or use {tryRecover}/{recover} which perform full validation.
*/
function parse(bytes memory signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
assembly ("memory-safe") {
// Check the signature length
switch mload(signature)
// - case 65: r,s,v signature (standard)
case 65 {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
case 64 {
let vs := mload(add(signature, 0x40))
r := mload(add(signature, 0x20))
s := and(vs, shr(1, not(0)))
v := add(shr(255, vs), 27)
}
default {
r := 0
s := 0
v := 0
}
}
}
/**
* @dev Variant of {parse} that takes a signature in calldata
*/
function parseCalldata(bytes calldata signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
assembly ("memory-safe") {
// Check the signature length
switch signature.length
// - case 65: r,s,v signature (standard)
case 65 {
r := calldataload(signature.offset)
s := calldataload(add(signature.offset, 0x20))
v := byte(0, calldataload(add(signature.offset, 0x40)))
}
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
case 64 {
let vs := calldataload(add(signature.offset, 0x20))
r := calldataload(signature.offset)
s := and(vs, shr(1, not(0)))
v := add(shr(255, vs), 27)
}
default {
r := 0
s := 0
v := 0
}
}
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.24;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./UserOperationLib.sol";
/* solhint-disable no-inline-assembly */
using UserOperationLib for bytes;
/*
* For simulation purposes, validateUserOp (and validatePaymasterUserOp)
* must return this value in case of signature failure, instead of revert.
*/
uint256 constant SIG_VALIDATION_FAILED = 1;
/*
* For simulation purposes, validateUserOp (and validatePaymasterUserOp)
* return this value on success.
*/
uint256 constant SIG_VALIDATION_SUCCESS = 0;
/**
* Returned data from validateUserOp.
* validateUserOp returns a uint256, which is created by `_packedValidationData` and
* parsed by `_parseValidationData`.
* @param aggregator - address(0) - The account validated the signature by itself.
* address(1) - The account failed to validate the signature.
* otherwise - This is an address of a signature aggregator that must
* be used to validate the signature.
* @param validAfter - This UserOp is valid only after this timestamp.
* @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely".
*/
struct ValidationData {
address aggregator;
uint48 validAfter;
uint48 validUntil;
}
/**
* Extract aggregator/sigFailed, validAfter, validUntil.
* Also convert zero validUntil to type(uint48).max.
* @param validationData - The packed validation data.
* @return data - The unpacked in-memory validation data.
*/
function _parseValidationData(
uint256 validationData
) pure returns (ValidationData memory data) {
address aggregator = address(uint160(validationData));
uint48 validUntil = uint48(validationData >> 160);
if (validUntil == 0) {
validUntil = type(uint48).max;
}
uint48 validAfter = uint48(validationData >> (48 + 160));
return ValidationData(aggregator, validAfter, validUntil);
}
/**
* Helper to pack the return value for validateUserOp.
* @param data - The ValidationData to pack.
* @return the packed validation data.
*/
function _packValidationData(
ValidationData memory data
) pure returns (uint256) {
return
uint160(data.aggregator) |
(uint256(data.validUntil) << 160) |
(uint256(data.validAfter) << (160 + 48));
}
/**
* Helper to pack the return value for validateUserOp, when not using an aggregator.
* @param sigFailed - True for signature failure, false for success.
* @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely".
* @param validAfter - First timestamp this UserOperation is valid.
* @return the packed validation data.
*/
function _packValidationData(
bool sigFailed,
uint48 validUntil,
uint48 validAfter
) pure returns (uint256) {
return
(sigFailed ? SIG_VALIDATION_FAILED : SIG_VALIDATION_SUCCESS) |
(uint256(validUntil) << 160) |
(uint256(validAfter) << (160 + 48));
}
/**
* keccak function over calldata.
* @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
*
* @param data - the calldata bytes array to perform keccak on.
* @return ret - the keccak hash of the 'data' array.
*/
function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
assembly ("memory-safe") {
let mem := mload(0x40)
let len := data.length
calldatacopy(mem, data.offset, len)
ret := keccak256(mem, len)
}
}
/**
* @notice Computes the Keccak-256 hash of a slice of calldata, followed by an 8-byte suffix.
* This function copies the first `len` bytes from the given calldata array `data` into memory.
* The assembly code is equivalent to:
* keccak256(abi.encodePacked(data[0:len], suffix))
* But more efficient, and doesn't move the free memory pointer, allowing the memory to be reused later.
*
* @param data Calldata byte array to read from.
* @param len Number of bytes to copy from `data` starting at its offset.
* @param suffix 8-byte value appended to the data bytes before hashing.
*
* @return ret The hash of (data[0:len] || suffix).
*/
function calldataKeccakWithSuffix(bytes calldata data, uint256 len, bytes8 suffix) pure returns (bytes32 ret) {
assembly ("memory-safe") {
let mem := mload(0x40)
calldatacopy(mem, data.offset, len)
mstore(add(mem, len), suffix)
len := add(len, 8)
ret := keccak256(mem, len)
}
}
/**
* Keccak function over paymaster data.
* If data ends with `PAYMASTER_SIG_MAGIC`, then
* read the previous 2 bytes as pmSignatureLength,
* and ignore this suffix from the hash.
* This means that the trailing pmSignatureLength+10 bytes are not covered by the UserOpHash, and thus are not signed.
* @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
*
* @param data - the calldata bytes array to perform keccak on.
* @return ret - the keccak hash of the 'data' array.
*/
function paymasterDataKeccak(bytes calldata data) pure returns (bytes32 ret) {
uint256 pmSignatureLength = data.getPaymasterSignatureLength();
if (pmSignatureLength > 0) {
unchecked {
//keccak everything up to the paymasterSignature, but still append the sig magic.
return calldataKeccakWithSuffix(data, data.length - (pmSignatureLength + UserOperationLib.PAYMASTER_SUFFIX_LEN), UserOperationLib.PAYMASTER_SIG_MAGIC);
}
}
return calldataKeccak(data);
}
/**
* The minimum of two numbers.
* @param a - First number.
* @param b - Second number.
* @return - the minimum value.
*/
function min(uint256 a, uint256 b) pure returns (uint256) {
return a < b ? a : b;
}
/**
* standard solidity memory allocation finalization.
* copied from solidity generated code
* @param memPointer - The current memory pointer
* @param allocationSize - Bytes allocated from memPointer.
*/
function finalizeAllocation(uint256 memPointer, uint256 allocationSize) pure {
assembly ("memory-safe"){
finalize_allocation(memPointer, allocationSize)
function finalize_allocation(memPtr, size) {
let newFreePtr := add(memPtr, round_up_to_mul_of_32(size))
mstore(64, newFreePtr)
}
function round_up_to_mul_of_32(value) -> result {
result := and(add(value, 31), not(31))
}
}
}// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; /** * @title IMpSmartWallet * @author stoneybro * @notice Interface for Mp Smart Wallet that the Intent Registry interacts with * @custom:security-contact [email protected] */ interface IMpSmartWallet { /*////////////////////////////////////////////////////////////// TYPES //////////////////////////////////////////////////////////////*/ /// @notice Jurisdiction codes for compliance tracking enum Jurisdiction { NONE, US_CA, US_NY, US_TX, US_FL, US_OTHER, UK, EU_DE, EU_FR, EU_OTHER, NG, SG, AE, OTHER } /// @notice Compliance categories for payment classification enum Category { NONE, PAYROLL_W2, PAYROLL_1099, CONTRACTOR, BONUS, INVOICE, VENDOR, GRANT, DIVIDEND, REIMBURSEMENT, OTHER } /// @notice Universal compliance metadata for jurisdiction-aware payment tracking /// @dev All array fields MUST match recipients.length for batch/recurring payments struct ComplianceMetadata { string[] entityIds; Jurisdiction[] jurisdictions; Category[] categories; string referenceId; } /*////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////*/ /** * @notice Increases the committed funds for intents. * @param token The token address (address(0) for ETH). * @param amount The amount to add to committed funds. */ function increaseCommitment(address token, uint256 amount) external; /** * @notice Decreases the committed funds after intent execution/cancellation. * @param token The token address (address(0) for ETH). * @param amount The amount to subtract from committed funds. */ function decreaseCommitment(address token, uint256 amount) external; /** * @notice Executes a batch of transfers as part of an Mp intent. * @param token The token address (address(0) for ETH, token address for ERC20). * @param recipients The array of recipient addresses. * @param amounts The array of amounts corresponding to each recipient. * @param intentId The unique identifier for the intent being executed. * @param transactionCount The current transaction number within the intent. * @param revertOnFailure Whether to revert entire transaction on any failure. * @param compliance Compliance metadata for tracking. * @return failedAmount The total amount that failed to transfer (only in skip mode) */ function executeBatchIntentTransfer( address token, address[] calldata recipients, uint256[] calldata amounts, bytes32 intentId, uint256 transactionCount, bool revertOnFailure, ComplianceMetadata calldata compliance ) external returns (uint256 failedAmount); /** * @notice Returns the available (uncommitted) balance for a specific token. * @param token The token address (address(0) for ETH, token address for ERC20). * @return The available balance. */ function getAvailableBalance(address token) external view returns (uint256); }
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*
* IMPORTANT: Deprecated. This storage-based reentrancy guard will be removed and replaced
* by the {ReentrancyGuardTransient} variant in v6.0.
*
* @custom:stateless
*/
abstract contract ReentrancyGuard {
using StorageSlot for bytes32;
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant REENTRANCY_GUARD_STORAGE =
0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
/**
* @dev A `view` only version of {nonReentrant}. Use to block view functions
* from being called, preventing reading from inconsistent contract state.
*
* CAUTION: This is a "view" modifier and does not change the reentrancy
* status. Use it only on view functions. For payable or non-payable functions,
* use the standard {nonReentrant} modifier instead.
*/
modifier nonReentrantView() {
_nonReentrantBeforeView();
_;
}
function _nonReentrantBeforeView() private view {
if (_reentrancyGuardEntered()) {
revert ReentrancyGuardReentrantCall();
}
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
_nonReentrantBeforeView();
// Any calls to nonReentrant after this point will fail
_reentrancyGuardStorageSlot().getUint256Slot().value = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_reentrancyGuardStorageSlot().getUint256Slot().value = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _reentrancyGuardStorageSlot().getUint256Slot().value == ENTERED;
}
function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
return REENTRANCY_GUARD_STORAGE;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
import {LowLevelCall} from "./LowLevelCall.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
}
if (addr == address(0)) {
if (LowLevelCall.returnDataSize() == 0) {
revert Errors.FailedDeployment();
} else {
LowLevelCall.bubbleRevert();
}
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |---------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |---------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 0x55) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)
pragma solidity ^0.8.24;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
*/
function toHexString(bytes memory input) internal pure returns (string memory) {
unchecked {
bytes memory buffer = new bytes(2 * input.length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 0; i < input.length; ++i) {
uint8 v = uint8(input[i]);
buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
}
return string(buffer);
}
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return Bytes.equal(bytes(a), bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i = 0; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
/* solhint-disable no-inline-assembly */
import "../interfaces/PackedUserOperation.sol";
import "./Helpers.sol";
/**
* Utility functions helpful when working with UserOperation structs.
*/
library UserOperationLib {
error InvalidPaymasterSignatureLength(uint256 dataLength, uint256 pmSignatureLength);
uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20;
uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36;
uint256 public constant PAYMASTER_DATA_OFFSET = 52;
uint256 constant internal PAYMASTER_SIG_MAGIC_LEN = 8;
uint256 constant internal PAYMASTER_SUFFIX_LEN = PAYMASTER_SIG_MAGIC_LEN + 2; // suffix length (signature length + magic)
bytes8 constant internal PAYMASTER_SIG_MAGIC = 0x22e325a297439656; // keccak("PaymasterSignature")[:8]
uint256 constant internal MIN_PAYMASTER_DATA_WITH_SUFFIX_LEN = PAYMASTER_DATA_OFFSET + PAYMASTER_SUFFIX_LEN; // minimum length of paymasterData that can contain a paymaster signature.
/**
* Relayer/block builder might submit the TX with higher priorityFee,
* but the user should not pay above what he signed for.
* @param userOp - The user operation data.
*/
function gasPrice(
PackedUserOperation calldata userOp
) internal view returns (uint256) {
unchecked {
(uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees);
return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
}
}
bytes32 internal constant PACKED_USEROP_TYPEHASH =
// solhint-disable-next-line gas-small-strings
keccak256(
"PackedUserOperation(address sender,uint256 nonce,bytes initCode,bytes callData,bytes32 accountGasLimits,uint256 preVerificationGas,bytes32 gasFees,bytes paymasterAndData)"
);
/**
* Pack the user operation data into bytes for hashing.
* @param userOp - The user operation data.
* @param overrideInitCodeHash - If set, encode this instead of the initCode field in the userOp.
*/
function encode(
PackedUserOperation calldata userOp,
bytes32 overrideInitCodeHash
) internal pure returns (bytes memory ret) {
address sender = userOp.sender;
uint256 nonce = userOp.nonce;
bytes32 hashInitCode = overrideInitCodeHash != 0 ? overrideInitCodeHash : calldataKeccak(userOp.initCode);
bytes32 hashCallData = calldataKeccak(userOp.callData);
bytes32 accountGasLimits = userOp.accountGasLimits;
uint256 preVerificationGas = userOp.preVerificationGas;
bytes32 gasFees = userOp.gasFees;
bytes32 hashPaymasterAndData = paymasterDataKeccak(userOp.paymasterAndData);
return abi.encode(
UserOperationLib.PACKED_USEROP_TYPEHASH,
sender, nonce,
hashInitCode, hashCallData,
accountGasLimits, preVerificationGas, gasFees,
hashPaymasterAndData
);
}
function unpackUints(
bytes32 packed
) internal pure returns (uint256 high128, uint256 low128) {
return (unpackHigh128(packed), unpackLow128(packed));
}
// Unpack just the high 128-bits from a packed value
function unpackHigh128(bytes32 packed) internal pure returns (uint256) {
return uint256(packed) >> 128;
}
// Unpack just the low 128-bits from a packed value
function unpackLow128(bytes32 packed) internal pure returns (uint256) {
return uint128(uint256(packed));
}
function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp)
internal pure returns (uint256) {
return unpackHigh128(userOp.gasFees);
}
function unpackMaxFeePerGas(PackedUserOperation calldata userOp)
internal pure returns (uint256) {
return unpackLow128(userOp.gasFees);
}
function unpackVerificationGasLimit(PackedUserOperation calldata userOp)
internal pure returns (uint256) {
return unpackHigh128(userOp.accountGasLimits);
}
function unpackCallGasLimit(PackedUserOperation calldata userOp)
internal pure returns (uint256) {
return unpackLow128(userOp.accountGasLimits);
}
function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp)
internal pure returns (uint256) {
return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET]));
}
function unpackPostOpGasLimit(PackedUserOperation calldata userOp)
internal pure returns (uint256) {
return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]));
}
function unpackPaymasterStaticFields(
bytes calldata paymasterAndData
) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) {
return (
address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])),
uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])),
uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET]))
);
}
/**
* return the length of the paymaster signature appended in paymasterAndData.
* return 0 if no signature.
* note that this signature is not part of the userOpHash, and thus not signed by the user.
*/
function getPaymasterSignatureLength(
bytes calldata paymasterAndData
) internal pure returns (uint256 paymasterSignatureLength) {
unchecked {
uint256 dataLength = paymasterAndData.length;
if (dataLength < MIN_PAYMASTER_DATA_WITH_SUFFIX_LEN) {
return 0;
}
bytes8 suffix8 = bytes8(paymasterAndData[dataLength - PAYMASTER_SIG_MAGIC_LEN : dataLength]);
if (suffix8 != PAYMASTER_SIG_MAGIC) {
return 0;
}
uint256 pmSignatureLength = uint16(bytes2(paymasterAndData[dataLength - PAYMASTER_SUFFIX_LEN :]));
if (pmSignatureLength > dataLength - MIN_PAYMASTER_DATA_WITH_SUFFIX_LEN) {
// paymasterSignature cannot extend before the paymasterData
revert InvalidPaymasterSignatureLength(dataLength, pmSignatureLength);
}
return pmSignatureLength;
}
}
/**
* return the paymasterData that is signed by the user's signature
* this data excludes the paymaster signature appended at the end of paymasterAndData
*/
function getSignedPaymasterData(
bytes calldata paymasterAndData
) internal pure returns (bytes calldata signedPaymasterData) {
uint256 sigLen = getPaymasterSignatureLength(paymasterAndData);
uint256 paymasterDataLen = paymasterAndData.length;
if (sigLen != 0) {
paymasterDataLen -= (sigLen + PAYMASTER_SUFFIX_LEN);
}
return paymasterAndData[PAYMASTER_DATA_OFFSET : paymasterDataLen];
}
/**
* decodes dynamic signature appended to paymasterAndData
* note that this signature is not part of the userOpHash, and thus not signed by the user.
* @param paymasterAndData - The paymasterAndData field of the user operation
* @return pmSig the paymaster-specific signature (may be empty)
*/
function getPaymasterSignature(bytes calldata paymasterAndData
) internal pure returns (bytes calldata pmSig) {
uint256 len = getPaymasterSignatureLength(paymasterAndData);
return getPaymasterSignatureWithLength(paymasterAndData, len);
}
/**
* decodes dynamic signature appended to paymasterAndData
* Assumes the length field is valid, and was obtained from getPaymasterSignatureLength
* @param paymasterAndData - The paymasterAndData field of the user operation
* @param paymasterSignatureLength - length of the signature (as returned by getPaymasterSignatureLength)
* @return pmSig the paymaster-specific signature (may be empty)
*/
function getPaymasterSignatureWithLength(
bytes calldata paymasterAndData, uint256 paymasterSignatureLength
) internal pure returns (bytes calldata pmSig) {
if (paymasterSignatureLength == 0) {
return paymasterAndData[0 : 0];
}
uint256 dataLen = paymasterAndData.length;
unchecked {
uint256 pmSigEnd = dataLen - PAYMASTER_SUFFIX_LEN;
uint256 pmSigBegin = pmSigEnd - paymasterSignatureLength;
return paymasterAndData[pmSigBegin : pmSigEnd];
}
}
/**
* encode the paymaster signature as suffix to append to paymasterAndData
* This method is a reference for off-chain encoding of paymaster signature.
*/
function encodePaymasterSignature(bytes calldata paymasterSignature) internal pure returns (bytes memory) {
uint256 len = paymasterSignature.length;
if (len == 0) {
return "";
}
return abi.encodePacked(
paymasterSignature,
uint16(len),
PAYMASTER_SIG_MAGIC
);
}
/**
* Hash the user operation data.
* @param userOp - The user operation data.
* @param overrideInitCodeHash - If set, the initCode hash will be replaced with this value just for UserOp hashing.
*/
function hash(
PackedUserOperation calldata userOp,
bytes32 overrideInitCodeHash
) internal pure returns (bytes32) {
return keccak256(encode(userOp, overrideInitCodeHash));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/LowLevelCall.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of low level call functions that implement different calling strategies to deal with the return data.
*
* WARNING: Using this library requires an advanced understanding of Solidity and how the EVM works. It is recommended
* to use the {Address} library instead.
*/
library LowLevelCall {
/// @dev Performs a Solidity function call using a low level `call` and ignoring the return data.
function callNoReturn(address target, bytes memory data) internal returns (bool success) {
return callNoReturn(target, 0, data);
}
/// @dev Same as {callNoReturn}, but allows to specify the value to be sent in the call.
function callNoReturn(address target, uint256 value, bytes memory data) internal returns (bool success) {
assembly ("memory-safe") {
success := call(gas(), target, value, add(data, 0x20), mload(data), 0x00, 0x00)
}
}
/// @dev Performs a Solidity function call using a low level `call` and returns the first 64 bytes of the result
/// in the scratch space of memory. Useful for functions that return a tuple of single-word values.
///
/// WARNING: Do not assume that the results are zero if `success` is false. Memory can be already allocated
/// and this function doesn't zero it out.
function callReturn64Bytes(
address target,
bytes memory data
) internal returns (bool success, bytes32 result1, bytes32 result2) {
return callReturn64Bytes(target, 0, data);
}
/// @dev Same as {callReturnBytes32Pair}, but allows to specify the value to be sent in the call.
function callReturn64Bytes(
address target,
uint256 value,
bytes memory data
) internal returns (bool success, bytes32 result1, bytes32 result2) {
assembly ("memory-safe") {
success := call(gas(), target, value, add(data, 0x20), mload(data), 0x00, 0x40)
result1 := mload(0x00)
result2 := mload(0x20)
}
}
/// @dev Performs a Solidity function call using a low level `staticcall` and ignoring the return data.
function staticcallNoReturn(address target, bytes memory data) internal view returns (bool success) {
assembly ("memory-safe") {
success := staticcall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x00)
}
}
/// @dev Performs a Solidity function call using a low level `staticcall` and returns the first 64 bytes of the result
/// in the scratch space of memory. Useful for functions that return a tuple of single-word values.
///
/// WARNING: Do not assume that the results are zero if `success` is false. Memory can be already allocated
/// and this function doesn't zero it out.
function staticcallReturn64Bytes(
address target,
bytes memory data
) internal view returns (bool success, bytes32 result1, bytes32 result2) {
assembly ("memory-safe") {
success := staticcall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x40)
result1 := mload(0x00)
result2 := mload(0x20)
}
}
/// @dev Performs a Solidity function call using a low level `delegatecall` and ignoring the return data.
function delegatecallNoReturn(address target, bytes memory data) internal returns (bool success) {
assembly ("memory-safe") {
success := delegatecall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x00)
}
}
/// @dev Performs a Solidity function call using a low level `delegatecall` and returns the first 64 bytes of the result
/// in the scratch space of memory. Useful for functions that return a tuple of single-word values.
///
/// WARNING: Do not assume that the results are zero if `success` is false. Memory can be already allocated
/// and this function doesn't zero it out.
function delegatecallReturn64Bytes(
address target,
bytes memory data
) internal returns (bool success, bytes32 result1, bytes32 result2) {
assembly ("memory-safe") {
success := delegatecall(gas(), target, add(data, 0x20), mload(data), 0x00, 0x40)
result1 := mload(0x00)
result2 := mload(0x20)
}
}
/// @dev Returns the size of the return data buffer.
function returnDataSize() internal pure returns (uint256 size) {
assembly ("memory-safe") {
size := returndatasize()
}
}
/// @dev Returns a buffer containing the return data from the last call.
function returnData() internal pure returns (bytes memory result) {
assembly ("memory-safe") {
result := mload(0x40)
mstore(result, returndatasize())
returndatacopy(add(result, 0x20), 0x00, returndatasize())
mstore(0x40, add(result, add(0x20, returndatasize())))
}
}
/// @dev Revert with the return data from the last call.
function bubbleRevert() internal pure {
assembly ("memory-safe") {
let fmp := mload(0x40)
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
}
function bubbleRevert(bytes memory returndata) internal pure {
assembly ("memory-safe") {
revert(add(returndata, 0x20), mload(returndata))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
/**
* @dev Counts the number of leading zero bits in a uint256.
*/
function clz(uint256 x) internal pure returns (uint256) {
return ternary(x == 0, 256, 255 - log2(x));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)
pragma solidity ^0.8.24;
import {Math} from "./math/Math.sol";
/**
* @dev Bytes operations.
*/
library Bytes {
/**
* @dev Forward search for `s` in `buffer`
* * If `s` is present in the buffer, returns the index of the first instance
* * If `s` is not present in the buffer, returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
*/
function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
return indexOf(buffer, s, 0);
}
/**
* @dev Forward search for `s` in `buffer` starting at position `pos`
* * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
* * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
*/
function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
uint256 length = buffer.length;
for (uint256 i = pos; i < length; ++i) {
if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
return i;
}
}
return type(uint256).max;
}
/**
* @dev Backward search for `s` in `buffer`
* * If `s` is present in the buffer, returns the index of the last instance
* * If `s` is not present in the buffer, returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
*/
function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
return lastIndexOf(buffer, s, type(uint256).max);
}
/**
* @dev Backward search for `s` in `buffer` starting at position `pos`
* * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
* * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
*/
function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
unchecked {
uint256 length = buffer.length;
for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
return i - 1;
}
}
return type(uint256).max;
}
}
/**
* @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
* memory.
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
*/
function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
return slice(buffer, start, buffer.length);
}
/**
* @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
* memory. The `end` argument is truncated to the length of the `buffer`.
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
*/
function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
// sanitize
end = Math.min(end, buffer.length);
start = Math.min(start, end);
// allocate and copy
bytes memory result = new bytes(end - start);
assembly ("memory-safe") {
mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
}
return result;
}
/**
* @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
*
* NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
*/
function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
return splice(buffer, start, buffer.length);
}
/**
* @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
* `end` argument is truncated to the length of the `buffer`.
*
* NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
*/
function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
// sanitize
end = Math.min(end, buffer.length);
start = Math.min(start, end);
// allocate and copy
assembly ("memory-safe") {
mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
mstore(buffer, sub(end, start))
}
return buffer;
}
/**
* @dev Concatenate an array of bytes into a single bytes object.
*
* For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
* `abi.encodePacked`.
*
* NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
* significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
*/
function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
uint256 length = 0;
for (uint256 i = 0; i < buffers.length; ++i) {
length += buffers[i].length;
}
bytes memory result = new bytes(length);
uint256 offset = 0x20;
for (uint256 i = 0; i < buffers.length; ++i) {
bytes memory input = buffers[i];
assembly ("memory-safe") {
mcopy(add(result, offset), add(input, 0x20), mload(input))
}
unchecked {
offset += input.length;
}
}
return result;
}
/**
* @dev Returns true if the two byte buffers are equal.
*/
function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
return a.length == b.length && keccak256(a) == keccak256(b);
}
/**
* @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
* Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
*/
function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
value = // swap bytes
((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
value = // swap 2-byte long pairs
((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
value = // swap 4-byte long pairs
((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
value = // swap 8-byte long pairs
((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
return (value >> 128) | (value << 128); // swap 16-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 128-bit values.
function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
value = // swap bytes
((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
value = // swap 2-byte long pairs
((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
value = // swap 4-byte long pairs
((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
return (value >> 64) | (value << 64); // swap 8-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 64-bit values.
function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
return (value >> 32) | (value << 32); // swap 4-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 32-bit values.
function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
return (value >> 16) | (value << 16); // swap 2-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 16-bit values.
function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
return (value >> 8) | (value << 8);
}
/**
* @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
* if the buffer is all zeros.
*/
function clz(bytes memory buffer) internal pure returns (uint256) {
for (uint256 i = 0; i < buffer.length; i += 0x20) {
bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
if (chunk != bytes32(0)) {
return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
}
}
return 8 * buffer.length;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}{
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"@chainlink/contracts/=lib/chainlink-brownie-contracts/contracts/",
"@account-abstraction/contracts/=lib/account-abstraction/contracts/",
"account-abstraction/=lib/account-abstraction/contracts/",
"chainlink-brownie-contracts/=lib/chainlink-brownie-contracts/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/openzeppelin-contracts/lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": true
}Contract ABI
API[{"inputs":[{"internalType":"address","name":"_implementation","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"MpSmartWalletFactory__ImplementationUndeployed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"AccountCreated","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"createSmartAccount","outputs":[{"internalType":"address","name":"account","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"getPredictedAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserClone","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userClones","outputs":[{"internalType":"address","name":"clone","type":"address"}],"stateMutability":"view","type":"function"}]Contract Creation Code
60a03461008e57601f61048038819003918201601f19168301916001600160401b038311848410176100925780849260209460405283398101031261008e57516001600160a01b038116810361008e57803b1561007f576080526040516103d990816100a782396080518181816101110152818161014701526101b90152f35b6313eb50c160e01b5f5260045ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe6080806040526004361015610012575f80fd5b5f3560e01c9081635c60da1b146101355750806380bd9445146100535780638634a76e146100db578063c89cda6e1461009a5763d063c2cc14610053575f80fd5b34610096576020366003190112610096576004356001600160a01b03811690819003610096575f525f602052602060018060a01b0360405f205416604051908152f35b5f80fd5b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c96020916101ac565b6040516001600160a01b039091168152f35b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c961010d60209261030f565b30907f0000000000000000000000000000000000000000000000000000000000000000610341565b34610096575f366003190112610096577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90601f8019910116810190811067ffffffffffffffff82111761019857604052565b634e487b7160e01b5f52604160045260245ffd5b905f6101b78361030f565b7f00000000000000000000000000000000000000000000000000000000000000006101e3308383610341565b803b610308575080763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff6e5af43d82803e903d91602b57fd5bf39360881c16175f5260781b17602052603760095ff56001600160a01b0381169081156102f95793813b156100965760405163189acdbd60e31b81526001600160a01b0390911660048201819052925f8260248183875af180156102ee576102bc575b83815260208190526040812080546001600160a01b031916841790557fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc8915080a3565b505f6102c791610176565b7fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc85f610279565b6040513d5f823e3d90fd5b63b06ebf3d60e01b5f5260045ffd5b9450505050565b60405160208101916bffffffffffffffffffffffff199060601b1682526014815261033b603482610176565b51902090565b60405160388101939093526f5af43d82803e903d91602b57fd5bf3ff60248401526014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b03169056fea26469706673582212209ca41669d5879847ad2b9e3b18ecc677ce772afd2200daa6e7f720c7b211aebe64736f6c634300081c003300000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f3560e01c9081635c60da1b146101355750806380bd9445146100535780638634a76e146100db578063c89cda6e1461009a5763d063c2cc14610053575f80fd5b34610096576020366003190112610096576004356001600160a01b03811690819003610096575f525f602052602060018060a01b0360405f205416604051908152f35b5f80fd5b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c96020916101ac565b6040516001600160a01b039091168152f35b34610096576020366003190112610096576004356001600160a01b0381168103610096576100c961010d60209261030f565b30907f00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe610341565b34610096575f366003190112610096577f00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe6001600160a01b03168152602090f35b90601f8019910116810190811067ffffffffffffffff82111761019857604052565b634e487b7160e01b5f52604160045260245ffd5b905f6101b78361030f565b7f00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe6101e3308383610341565b803b610308575080763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff6e5af43d82803e903d91602b57fd5bf39360881c16175f5260781b17602052603760095ff56001600160a01b0381169081156102f95793813b156100965760405163189acdbd60e31b81526001600160a01b0390911660048201819052925f8260248183875af180156102ee576102bc575b83815260208190526040812080546001600160a01b031916841790557fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc8915080a3565b505f6102c791610176565b7fac631f3001b55ea1509cf3d7e74898f85392a61a76e8149181ae1259622dabc85f610279565b6040513d5f823e3d90fd5b63b06ebf3d60e01b5f5260045ffd5b9450505050565b60405160208101916bffffffffffffffffffffffff199060601b1682526014815261033b603482610176565b51902090565b60405160388101939093526f5af43d82803e903d91602b57fd5bf3ff60248401526014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015260556043909101206001600160a01b03169056fea26469706673582212209ca41669d5879847ad2b9e3b18ecc677ce772afd2200daa6e7f720c7b211aebe64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe
-----Decoded View---------------
Arg [0] : _implementation (address): 0x37c5c677146A19e61295E40F0518bAf3f94305fE
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000037c5c677146a19e61295e40f0518baf3f94305fe
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.